forked from neurosim/MLP_NeuroSim_V3.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCell.cpp
776 lines (740 loc) · 42.5 KB
/
Cell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*******************************************************************************
* Copyright (c) 2015-2017
* School of Electrical, Computer and Energy Engineering, Arizona State University
* PI: Prof. Shimeng Yu
* All rights reserved.
*
* This source code is part of NeuroSim - a device-circuit-algorithm framework to benchmark
* neuro-inspired architectures with synaptic devices(e.g., SRAM and emerging non-volatile memory).
* Copyright of the model is maintained by the developers, and the model is distributed under
* the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License
* http://creativecommons.org/licenses/by-nc/4.0/legalcode.
* The source code is free and you can redistribute and/or modify it
* by providing that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Developer list:
* Pai-Yu Chen Email: pchen72 at asu dot edu
*
* Xiaochen Peng Email: xpeng15 at asu dot edu
********************************************************************************/
#include <ctime>
#include <iostream>
#include <math.h>
#include "formula.h"
#include "Array.h"
#include "Cell.h"
/* General eNVM */
void AnalogNVM::WriteEnergyCalculation(double wireCapCol) {
//printf("calculating write energy consumption\n");
if (nonlinearIV) { // Currently only for cross-point array
/* I-V nonlinearity */
double conductancePrevAtVwLTP = NonlinearConductance(conductancePrev, NL, writeVoltageLTP, readVoltage, writeVoltageLTP);
double conductancePrevAtHalfVwLTP = NonlinearConductance(conductancePrev, NL, writeVoltageLTP, readVoltage, writeVoltageLTP/2);
double conductancePrevAtVwLTD = NonlinearConductance(conductancePrev, NL, writeVoltageLTD, readVoltage, writeVoltageLTD);
double conductancePrevAtHalfVwLTD = NonlinearConductance(conductancePrev, NL, writeVoltageLTD, readVoltage, writeVoltageLTD/2);
conductanceAtVwLTP = NonlinearConductance(conductance, NL, writeVoltageLTP, readVoltage, writeVoltageLTP);
conductanceAtHalfVwLTP = NonlinearConductance(conductance, NL, writeVoltageLTP, readVoltage, writeVoltageLTP/2);
conductanceAtVwLTD = NonlinearConductance(conductance, NL, writeVoltageLTD, readVoltage, writeVoltageLTD);
conductanceAtHalfVwLTD = NonlinearConductance(conductance, NL, writeVoltageLTD, readVoltage, writeVoltageLTD/2);
if (numPulse > 0) { // If the cell needs LTP pulses
writeEnergy = writeVoltageLTP * writeVoltageLTP * (conductancePrevAtVwLTP+conductanceAtVwLTP)/2 * writePulseWidthLTP * numPulse;
writeEnergy += writeVoltageLTP * writeVoltageLTP * wireCapCol * numPulse;
if (nonIdenticalPulse) {
writeVoltageLTD = VinitLTD + (VinitLTD + VstepLTD * maxNumLevelLTD);
}
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductanceAtHalfVwLTD * writeLatencyLTD; // Half-selected during LTD phase (use the new conductance value if LTP phase is before LTD phase)
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
} else if (numPulse < 0) { // If the cell needs LTD pulses
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + (VinitLTP + VstepLTP * maxNumLevelLTP);
}
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductancePrevAtHalfVwLTP * writeLatencyLTP; // Half-selected during LTP phase (use the old conductance value if LTP phase is before LTD phase)
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
writeEnergy += writeVoltageLTD * writeVoltageLTD * wireCapCol * (-numPulse);
writeEnergy += writeVoltageLTD * writeVoltageLTD * (conductancePrevAtVwLTD+conductanceAtVwLTD)/2 * writePulseWidthLTD * (-numPulse);
} else { // Half-selected during both LTP and LTD phases
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + (VinitLTP + VstepLTP * maxNumLevelLTP);
writeVoltageLTD = VinitLTD + (VinitLTD + VstepLTD * maxNumLevelLTD);
}
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductancePrevAtHalfVwLTP * writeLatencyLTP;
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductancePrevAtHalfVwLTD * writeLatencyLTD;
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
}
} else { // If not cross-point array or not considering I-V nonlinearity
if (FeFET) { // FeFET structure
if (cmosAccess) {
if (numPulse > 0) { // If the cell needs LTP pulses
writeEnergy = writeVoltageLTP * writeVoltageLTP * (gateCapFeFET + wireCapCol) * numPulse;
if (nonIdenticalPulse) {
writeVoltageLTD = VinitLTD + VstepLTD * maxNumLevelLTD;
}
writeEnergy += writeVoltageLTD * writeVoltageLTD * (gateCapFeFET + wireCapCol);
} else if (numPulse < 0) { // If the cell needs LTD pulses
writeEnergy = writeVoltageLTD * writeVoltageLTD * (gateCapFeFET + wireCapCol) * (-numPulse);
} else { // Half-selected during both LTP and LTD phases
if (nonIdenticalPulse) {
writeVoltageLTD = VinitLTD + VstepLTD * maxNumLevelLTD;
}
writeEnergy = writeVoltageLTD * writeVoltageLTD * (gateCapFeFET + wireCapCol);
}
} else {
puts("FeFET structure is not compatible with crossbar");
exit(-1);
}
} else {
if (numPulse > 0) { // If the cell needs LTP pulses
writeEnergy = writeVoltageLTP * writeVoltageLTP * (conductancePrev+conductance)/2 * writePulseWidthLTP * numPulse;
writeEnergy += writeVoltageLTP * writeVoltageLTP * wireCapCol * numPulse;
if (!cmosAccess) { // Crossbar
if (nonIdenticalPulse) {
writeVoltageLTD = VinitLTD + (VinitLTD + VstepLTD * maxNumLevelLTD);
}
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductance * writeLatencyLTD; // Half-selected during LTD phase (use the new conductance value if LTP phase is before LTD phase)
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
}
} else if (numPulse < 0) { // If the cell needs LTD pulses
if (!cmosAccess) { // Crossbar
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + (VinitLTP + VstepLTP * maxNumLevelLTP);
}
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductancePrev * writeLatencyLTP; // Half-selected during LTP phase (use the old conductance value if LTP phase is before LTD phase)
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
} else { // 1T1R
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + VstepLTP * maxNumLevelLTP;
}
writeEnergy = writeVoltageLTP * writeVoltageLTP * wireCapCol;
}
writeEnergy += writeVoltageLTD * writeVoltageLTD * wireCapCol * (-numPulse);
writeEnergy += writeVoltageLTD * writeVoltageLTD * (conductancePrev+conductance)/2 * writePulseWidthLTD * (-numPulse);
} else { // Half-selected during both LTP and LTD phases
if (!cmosAccess) { // Crossbar
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + (VinitLTP + VstepLTP * maxNumLevelLTP);
writeVoltageLTD = VinitLTD + (VinitLTD + VstepLTD * maxNumLevelLTD);
}
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductancePrev * writeLatencyLTP;
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductancePrev * writeLatencyLTD;
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
} else { // 1T1R
if (nonIdenticalPulse) {
writeVoltageLTP = VinitLTP + VstepLTP * maxNumLevelLTP;
}
writeEnergy = writeVoltageLTP * writeVoltageLTP * wireCapCol;
}
}
}
}
//printf("writeEnergy is %.4e\n", writeEnergy);
}
/* Ideal device (no weight update nonlinearity) */
IdealDevice::IdealDevice(int x, int y) {
this->x = x; this->y = y; // Cell location: x (column) and y (row) start from index 0
maxConductance = 5e-6; // Maximum cell conductance (S)
minConductance = 100e-9; // Minimum cell conductance (S)
avgMaxConductance = maxConductance; // Average maximum cell conductance (S)
avgMinConductance = minConductance; // Average minimum cell conductance (S)
conductance = minConductance; // Current conductance (S) (dynamic variable)
conductancePrev = conductance; // Previous conductance (S) (dynamic variable)
readVoltage = 0.5; // On-chip read voltage (Vr) (V)
readPulseWidth = 5e-9; // Read pulse width (s) (will be determined by ADC)
writeVoltageLTP = 2; // Write voltage (V) for LTP or weight increase
writeVoltageLTD = 2; // Write voltage (V) for LTD or weight decrease
writePulseWidthLTP = 10e-9; // Write pulse width (s) for LTP or weight increase
writePulseWidthLTD = 10e-9; // Write pulse width (s) for LTD or weight decrease
writeEnergy = 0; // Dynamic variable for calculation of write energy (J)
maxNumLevelLTP = 63; // Maximum number of conductance states during LTP or weight increase
maxNumLevelLTD = 63; // Maximum number of conductance states during LTD or weight decrease
numPulse = 0; // Number of write pulses used in the most recent write operation (dynamic variable)
cmosAccess = true; // True: Pseudo-crossbar (1T1R), false: cross-point
FeFET = false; // True: FeFET structure (Pseudo-crossbar only, should be cmosAccess=1)
gateCapFeFET = 2.1717e-18; // Gate capacitance of FeFET (F)
resistanceAccess = 15e3; // The resistance of transistor (Ohm) in Pseudo-crossbar array when turned ON
nonlinearIV = false; // Consider I-V nonlinearity or not (Currently for cross-point array only)
nonIdenticalPulse = false; // Use non-identical pulse scheme in weight update or not (should be false here)
// Don't care other non-identical pulse parameters
NL = 10; // Nonlinearity in write scheme (the current ratio between Vw and Vw/2), assuming for the LTP side
if (nonlinearIV) { // Currently for cross-point array only
double Vr_exp = readVoltage; // XXX: Modify this value to Vr in the reported measurement data (can be different than readVoltage)
// Calculation of conductance at on-chip Vr
maxConductance = NonlinearConductance(maxConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
minConductance = NonlinearConductance(minConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
}
readNoise = false; // Consider read noise or not
sigmaReadNoise = 0.25; // Sigma of read noise in gaussian distribution
gaussian_dist = new std::normal_distribution<double>(0, sigmaReadNoise); // Set up mean and stddev for read noise
/* Conductance range variation */
conductanceRangeVar = false; // Consider variation of conductance range or not
maxConductanceVar = 0; // Sigma of maxConductance variation (S)
minConductanceVar = 0; // Sigma of minConductance variation (S)
std::mt19937 localGen;
localGen.seed(std::time(0));
gaussian_dist_maxConductance = new std::normal_distribution<double>(0, maxConductanceVar);
gaussian_dist_minConductance = new std::normal_distribution<double>(0, minConductanceVar);
if (conductanceRangeVar) {
maxConductance += (*gaussian_dist_maxConductance)(localGen);
minConductance += (*gaussian_dist_minConductance)(localGen);
if (minConductance >= maxConductance || maxConductance < 0 || minConductance < 0 ) { // Conductance variation check
puts("[Error] Conductance variation check not passed. The variation may be too large.");
exit(-1);
}
// Use the code below instead for re-choosing the variation if the check is not passed
//do {
// maxConductance = avgMaxConductance + (*gaussian_dist_maxConductance)(localGen);
// minConductance = avgMinConductance + (*gaussian_dist_minConductance)(localGen);
//} while (minConductance >= maxConductance || maxConductance < 0 || minConductance < 0);
}
heightInFeatureSize = cmosAccess? 4 : 2; // Cell height = 4F (Pseudo-crossbar) or 2F (cross-point)
widthInFeatureSize = cmosAccess? (FeFET? 6 : 4) : 2; // Cell width = 6F (FeFET) or 4F (Pseudo-crossbar) or 2F (cross-point)
}
double IdealDevice::Read(double voltage) {
extern std::mt19937 gen;
// TODO: nonlinear read
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
}
void IdealDevice::Write(double deltaWeightNormalized, double weight, double minWeight, double maxWeight) {
extern std::mt19937 gen;
if (deltaWeightNormalized >= 0) {
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTP);
numPulse = deltaWeightNormalized * maxNumLevelLTP;
} else {
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTD);
numPulse = deltaWeightNormalized * maxNumLevelLTD; // will be a negative number
}
double conductanceNew = conductance + deltaWeightNormalized * (maxConductance - minConductance);
if (conductanceNew > maxConductance) {
conductanceNew = maxConductance;
} else if (conductanceNew < minConductance) {
conductanceNew = minConductance;
}
/* Write latency calculation */
if (numPulse > 0) { // LTP
writeLatencyLTP = numPulse * writePulseWidthLTP;
writeLatencyLTD = 0;
} else { // LTD
writeLatencyLTP = 0;
writeLatencyLTD = -numPulse * writePulseWidthLTD;
}
conductancePrev = conductance;
conductance = conductanceNew;
}
/* Real Device */
RealDevice::RealDevice(int x, int y) {
this->x = x; this->y = y; // Cell location: x (column) and y (row) start from index 0
maxConductance = 3.8462e-8; // Maximum cell conductance (S)
minConductance = 3.0769e-9; // Minimum cell conductance (S)
avgMaxConductance = maxConductance; // Average maximum cell conductance (S)
avgMinConductance = minConductance; // Average minimum cell conductance (S)
conductance = minConductance; // Current conductance (S) (dynamic variable)
conductancePrev = conductance; // Previous conductance (S) (dynamic variable)
readVoltage = 0.5; // On-chip read voltage (Vr) (V)
readPulseWidth = 5e-9; // Read pulse width (s) (will be determined by ADC)
writeVoltageLTP = 3.2; // Write voltage (V) for LTP or weight increase
writeVoltageLTD = 2.8; // Write voltage (V) for LTD or weight decrease
writePulseWidthLTP = 300e-6; // Write pulse width (s) for LTP or weight increase
writePulseWidthLTD = 300e-6; // Write pulse width (s) for LTD or weight decrease
writeEnergy = 0; // Dynamic variable for calculation of write energy (J)
maxNumLevelLTP = 97; // Maximum number of conductance states during LTP or weight increase
maxNumLevelLTD = 100; // Maximum number of conductance states during LTD or weight decrease
numPulse = 0; // Number of write pulses used in the most recent write operation (dynamic variable)
cmosAccess = true; // True: Pseudo-crossbar (1T1R), false: cross-point
FeFET = false; // True: FeFET structure (Pseudo-crossbar only, should be cmosAccess=1)
gateCapFeFET = 2.1717e-18; // Gate capacitance of FeFET (F)
resistanceAccess = 15e3; // The resistance of transistor (Ohm) in Pseudo-crossbar array when turned ON
nonlinearIV = false; // Consider I-V nonlinearity or not (Currently for cross-point array only)
NL = 10; // I-V nonlinearity in write scheme (the current ratio between Vw and Vw/2), assuming for the LTP side
if (nonlinearIV) { // Currently for cross-point array only
double Vr_exp = readVoltage; // XXX: Modify this value to Vr in the reported measurement data (can be different than readVoltage)
// Calculation of conductance at on-chip Vr
maxConductance = NonlinearConductance(maxConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
minConductance = NonlinearConductance(minConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
}
nonlinearWrite = true; // Consider weight update nonlinearity or not
nonIdenticalPulse = false; // Use non-identical pulse scheme in weight update or not
if (nonIdenticalPulse) {
VinitLTP = 2.85; // Initial write voltage for LTP or weight increase (V)
VstepLTP = 0.05; // Write voltage step for LTP or weight increase (V)
VinitLTD = 2.1; // Initial write voltage for LTD or weight decrease (V)
VstepLTD = 0.05; // Write voltage step for LTD or weight decrease (V)
PWinitLTP = 75e-9; // Initial write pulse width for LTP or weight increase (s)
PWstepLTP = 5e-9; // Write pulse width for LTP or weight increase (s)
PWinitLTD = 75e-9; // Initial write pulse width for LTD or weight decrease (s)
PWstepLTD = 5e-9; // Write pulse width for LTD or weight decrease (s)
writeVoltageSquareSum = 0; // Sum of V^2 of non-identical pulses (dynamic variable)
}
readNoise = false; // Consider read noise or not
sigmaReadNoise = 0; // Sigma of read noise in gaussian distribution
gaussian_dist = new std::normal_distribution<double>(0, sigmaReadNoise); // Set up mean and stddev for read noise
std::mt19937 localGen; // It's OK not to use the external gen, since here the device-to-device vairation is a one-time deal
localGen.seed(std::time(0));
/* Device-to-device weight update variation */
NL_LTP = 2.4; // LTP nonlinearity
NL_LTD = -4.88; // LTD nonlinearity
sigmaDtoD = 0; // Sigma of device-to-device weight update vairation in gaussian distribution
gaussian_dist2 = new std::normal_distribution<double>(0, sigmaDtoD); // Set up mean and stddev for device-to-device weight update vairation
paramALTP = getParamA(NL_LTP + (*gaussian_dist2)(localGen)) * maxNumLevelLTP; // Parameter A for LTP nonlinearity
paramALTD = getParamA(NL_LTD + (*gaussian_dist2)(localGen)) * maxNumLevelLTD; // Parameter A for LTD nonlinearity
/* Cycle-to-cycle weight update variation */
sigmaCtoC = 0.035* (maxConductance - minConductance); // Sigma of cycle-to-cycle weight update vairation: defined as the percentage of conductance range
gaussian_dist3 = new std::normal_distribution<double>(0, sigmaCtoC); // Set up mean and stddev for cycle-to-cycle weight update vairation
/* Conductance range variation */
conductanceRangeVar = false; // Consider variation of conductance range or not
maxConductanceVar = 0; // Sigma of maxConductance variation (S)
minConductanceVar = 0; // Sigma of minConductance variation (S)
gaussian_dist_maxConductance = new std::normal_distribution<double>(0, maxConductanceVar);
gaussian_dist_minConductance = new std::normal_distribution<double>(0, minConductanceVar);
if (conductanceRangeVar) {
maxConductance += (*gaussian_dist_maxConductance)(localGen);
minConductance += (*gaussian_dist_minConductance)(localGen);
if (minConductance >= maxConductance || maxConductance < 0 || minConductance < 0 ) { // Conductance variation check
puts("[Error] Conductance variation check not passed. The variation may be too large.");
exit(-1);
}
// Use the code below instead for re-choosing the variation if the check is not passed
//do {
// maxConductance = avgMaxConductance + (*gaussian_dist_maxConductance)(localGen);
// minConductance = avgMinConductance + (*gaussian_dist_minConductance)(localGen);
//} while (minConductance >= maxConductance || maxConductance < 0 || minConductance < 0);
}
heightInFeatureSize = cmosAccess? 4 : 2; // Cell height = 4F (Pseudo-crossbar) or 2F (cross-point)
widthInFeatureSize = cmosAccess? (FeFET? 6 : 4) : 2; //// Cell width = 6F (FeFET) or 4F (Pseudo-crossbar) or 2F (cross-point)
}
double RealDevice::Read(double voltage) { // Return read current (A)
extern std::mt19937 gen;
if (nonlinearIV) {
// TODO: nonlinear read
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
} else {
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
}
}
void RealDevice::Write(double deltaWeightNormalized, double weight, double minWeight, double maxWeight) {
double conductanceNew = conductance; // =conductance if no update
if (deltaWeightNormalized > 0) { // LTP
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTP);
numPulse = deltaWeightNormalized * maxNumLevelLTP;
if (nonlinearWrite) {
paramBLTP = (maxConductance - minConductance) / (1 - exp(-maxNumLevelLTP/paramALTP));
xPulse = InvNonlinearWeight(conductance, maxNumLevelLTP, paramALTP, paramBLTP, minConductance);
conductanceNew = NonlinearWeight(xPulse+numPulse, maxNumLevelLTP, paramALTP, paramBLTP, minConductance);
} else {
xPulse = (conductance - minConductance) / (maxConductance - minConductance) * maxNumLevelLTP;
conductanceNew = (xPulse+numPulse) / maxNumLevelLTP * (maxConductance - minConductance) + minConductance;
}
} else { // LTD
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTD);
numPulse = deltaWeightNormalized * maxNumLevelLTD;
if (nonlinearWrite) {
paramBLTD = (maxConductance - minConductance) / (1 - exp(-maxNumLevelLTD/paramALTD));
xPulse = InvNonlinearWeight(conductance, maxNumLevelLTD, paramALTD, paramBLTD, minConductance);
conductanceNew = NonlinearWeight(xPulse+numPulse, maxNumLevelLTD, paramALTD, paramBLTD, minConductance);
} else {
xPulse = (conductance - minConductance) / (maxConductance - minConductance) * maxNumLevelLTD;
conductanceNew = (xPulse+numPulse) / maxNumLevelLTD * (maxConductance - minConductance) + minConductance;
}
}
/* Cycle-to-cycle variation */
extern std::mt19937 gen;
if (sigmaCtoC && numPulse != 0) {
conductanceNew += (*gaussian_dist3)(gen) * sqrt(abs(numPulse)); // Absolute variation
}
if (conductanceNew > maxConductance) {
conductanceNew = maxConductance;
} else if (conductanceNew < minConductance) {
conductanceNew = minConductance;
}
/* Write latency calculation */
if (!nonIdenticalPulse) { // Identical write pulse scheme
if (numPulse > 0) { // LTP
writeLatencyLTP = numPulse * writePulseWidthLTP;
writeLatencyLTD = 0;
} else { // LTD
writeLatencyLTP = 0;
writeLatencyLTD = -numPulse * writePulseWidthLTD;
}
} else { // Non-identical write pulse scheme
writeLatencyLTP = 0;
writeLatencyLTD = 0;
writeVoltageSquareSum = 0;
double V = 0;
double PW = 0;
if (numPulse > 0) { // LTP
for (int i=0; i<numPulse; i++) {
V = VinitLTP + (xPulse+i) * VstepLTP;
PW = PWinitLTP + (xPulse+i) * PWstepLTP;
writeLatencyLTP += PW;
writeVoltageSquareSum += V * V;
}
writePulseWidthLTP = writeLatencyLTP / numPulse;
} else { // LTD
for (int i=0; i<(-numPulse); i++) {
V = VinitLTD + (maxNumLevelLTD-xPulse+i) * VstepLTD;
PW = PWinitLTD + (maxNumLevelLTD-xPulse+i) * PWstepLTD;
writeLatencyLTD += PW;
writeVoltageSquareSum += V * V;
}
writePulseWidthLTD = writeLatencyLTD / (-numPulse);
}
}
conductancePrev = conductance;
conductance = conductanceNew;
}
/* Measured device */
MeasuredDevice::MeasuredDevice(int x, int y) {
this->x = x; this->y = y; // Cell location: x (column) and y (row) start from index 0
readVoltage = 0.5; // On-chip read voltage (Vr) (V)
readPulseWidth = 5e-9; // Read pulse width (s) (will be determined by ADC)
writeVoltageLTP = 2; // Write voltage (V) for LTP or weight increase
writeVoltageLTD = 2; // Write voltage (V) for LTD or weight decrease
writePulseWidthLTP = 100e-9; // Write pulse width (s) for LTP or weight increase
writePulseWidthLTD = 100e-9; // Write pulse width (s) for LTD or weight decrease
writeEnergy = 0; // Dynamic variable for calculation of write energy (J)
numPulse = 0; // Number of write pulses used in the most recent write operation (dynamic variable)
cmosAccess = true; // True: Pseudo-crossbar (1T1R), false: cross-point
FeFET = false; // True: FeFET structure (Pseudo-crossbar only, should be cmosAccess=1)
gateCapFeFET = 2.1717e-18; // Gate capacitance of FeFET (F)
resistanceAccess = 15e3; // The resistance of transistor (Ohm) in Pseudo-crossbar array when turned ON
nonlinearIV = false; // Currently for cross-point array only
nonlinearWrite = false; // Consider weight update nonlinearity or not
nonIdenticalPulse = false; // Use non-identical pulse scheme in weight update or not
if (nonIdenticalPulse) {
VinitLTP = 2.85; // Initial write voltage for LTP or weight increase (V)
VstepLTP = 0.05; // Write voltage step for LTP or weight increase (V)
VinitLTD = 2.1; // Initial write voltage for LTD or weight decrease (V)
VstepLTD = 0.05; // Write voltage step for LTD or weight decrease (V)
PWinitLTP = 75e-9; // Initial write pulse width for LTP or weight increase (s)
PWstepLTP = 5e-9; // Write pulse width for LTP or weight increase (s)
PWinitLTD = 75e-9; // Initial write pulse width for LTD or weight decrease (s)
PWstepLTD = 5e-9; // Write pulse width for LTD or weight decrease (s)
writeVoltageSquareSum = 0; // Sum of V^2 of non-identical pulses (dynamic variable)
}
readNoise = false; // Consider read noise or not
sigmaReadNoise = 0.0289; // Sigma of read noise in gaussian distribution
NL = 10; // Nonlinearity in write scheme (the current ratio between Vw and Vw/2), assuming for the LTP side
gaussian_dist = new std::normal_distribution<double>(0, sigmaReadNoise); // Set up mean and stddev for read noise
symLTPandLTD = false; // True: use LTP conductance data for LTD
/* LTP */
double rawDataConductanceLTP[] = {0,1.00e-09,2.00e-09,3.00e-09,4.00e-09,5.00e-09,6.00e-09,7.00e-09,8.00e-09,9.00e-09,1.00e-08,1.10e-08,1.20e-08,1.30e-08,1.40e-08,1.50e-08,1.60e-08,1.70e-08,1.80e-08,1.90e-08,2.00e-08,2.10e-08,2.20e-08,2.30e-08,2.40e-08,2.50e-08,2.60e-08,2.70e-08,2.80e-08,2.90e-08,3.00e-08,3.10e-08,3.20e-08,3.30e-08,3.40e-08,3.50e-08,3.60e-08,3.70e-08,3.80e-08,3.90e-08,4.00e-08,4.10e-08,4.20e-08,4.30e-08,4.40e-08,4.50e-08,4.60e-08,4.70e-08,4.80e-08,4.90e-08,5.00e-08,5.10e-08,5.20e-08,5.30e-08,5.40e-08,5.50e-08,5.60e-08,5.70e-08,5.80e-08,5.90e-08,6.00e-08,6.10e-08,6.20e-08,6.30e-08};
dataConductanceLTP.insert(dataConductanceLTP.begin(), rawDataConductanceLTP, rawDataConductanceLTP + sizeof(rawDataConductanceLTP)/sizeof(rawDataConductanceLTP[0])); // Put the raw data into a member variable of vector
maxNumLevelLTP = dataConductanceLTP.size() - 1;
/* LTD */
if (symLTPandLTD) { // Use LTP conductance data for LTD
for (int i=maxNumLevelLTP; i>=0; i--) {
dataConductanceLTD.push_back(dataConductanceLTP[i]);
}
maxNumLevelLTD = dataConductanceLTD.size() - 1;
} else { // Use provided LTD conductance data
double rawDataConductanceLTD[] = {6.30e-08,6.20e-08,6.10e-08,6.00e-08,5.90e-08,5.80e-08,5.70e-08,5.60e-08,5.50e-08,5.40e-08,5.30e-08,5.20e-08,5.10e-08,5.00e-08,4.90e-08,4.80e-08,4.70e-08,4.60e-08,4.50e-08,4.40e-08,4.30e-08,4.20e-08,4.10e-08,4.00e-08,3.90e-08,3.80e-08,3.70e-08,3.60e-08,3.50e-08,3.40e-08,3.30e-08,3.20e-08,3.10e-08,3.00e-08,2.90e-08,2.80e-08,2.70e-08,2.60e-08,2.50e-08,2.40e-08,2.30e-08,2.20e-08,2.10e-08,2.00e-08,1.90e-08,1.80e-08,1.70e-08,1.60e-08,1.50e-08,1.40e-08,1.30e-08,1.20e-08,1.10e-08,1.00e-08,9.00e-09,8.00e-09,7.00e-09,6.00e-09,5.00e-09,4.00e-09,3.00e-09,2.00e-09,1.00e-09,0};
dataConductanceLTD.insert(dataConductanceLTD.begin(), rawDataConductanceLTD, rawDataConductanceLTD + sizeof(rawDataConductanceLTD)/sizeof(rawDataConductanceLTD[0])); // Put the raw data into a member variable of vector
maxNumLevelLTD = dataConductanceLTD.size() - 1;
}
/* Define max/min/initial conductance */
maxConductance = (dataConductanceLTP.back() > dataConductanceLTD.front())? dataConductanceLTD.front() : dataConductanceLTP.back(); // The last conductance point of LTP or the first conductance point of LTD, depending on which one is smaller
minConductance = (dataConductanceLTP.front() > dataConductanceLTD.back())? dataConductanceLTP.front() : dataConductanceLTD.back(); // The first conductance point of LTP or the last conductance point of LTD, depending on which one is larger
avgMaxConductance = maxConductance; // Average maximum cell conductance (S)
avgMinConductance = minConductance; // Average minimum cell conductance (S)
conductance = minConductance;
conductancePrev = conductance;
// Data check
/* Check if the conductance range of LTP and LTD are consistent */
if (dataConductanceLTP.back() != dataConductanceLTD.front() || dataConductanceLTP.front() != dataConductanceLTD.back()) {
puts("[Error] Conductance range of LTP and LTD are not consistent");
exit(-1);
}
/* Check if LTP conductance is monotonically increasing */
for (int i=1; i<=maxNumLevelLTP; i++) {
if (dataConductanceLTP[i] - dataConductanceLTP[i-1] <= 0) {
puts("[Error] LTP conductance should be monotonically increasing");
exit(-1);
}
}
/* Check if LTD conductance is monotonically decreasing */
for (int i=1; i<=maxNumLevelLTD; i++) {
if (dataConductanceLTD[i] - dataConductanceLTD[i-1] >= 0) {
puts("[Error] LTD conductance should be monotonically decreasing");
exit(-1);
}
}
heightInFeatureSize = cmosAccess? 4 : 2; // Cell height = 4F (Pseudo-crossbar) or 2F (cross-point)
widthInFeatureSize = cmosAccess? (FeFET? 6 : 4) : 2; // Cell width = 6F (FeFET) or 4F (Pseudo-crossbar) or 2F (cross-point)
}
double MeasuredDevice::Read(double voltage) { // Return read current (A)
extern std::mt19937 gen;
if (nonlinearIV) {
// TODO: nonlinear read
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
} else {
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
}
}
void MeasuredDevice::Write(double deltaWeightNormalized, double weight, double minWeight, double maxWeight) {
double conductanceNew;
if (deltaWeightNormalized > 0) { // LTP
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTP);
numPulse = deltaWeightNormalized * maxNumLevelLTP;
if (nonlinearWrite) {
xPulse = InvMeasuredLTP(conductance, maxNumLevelLTP, dataConductanceLTP);
conductanceNew = MeasuredLTP(xPulse+numPulse, maxNumLevelLTP, dataConductanceLTP);
} else {
xPulse = (conductance - minConductance) / (maxConductance - minConductance) * maxNumLevelLTP;
conductanceNew = (weight-minWeight)/(maxWeight-minWeight) * (maxConductance - minConductance) + minConductance;
if (conductanceNew > maxConductance) {
conductanceNew = maxConductance;
}
}
} else { // LTD
deltaWeightNormalized = deltaWeightNormalized/(maxWeight-minWeight);
deltaWeightNormalized = truncate(deltaWeightNormalized, maxNumLevelLTD);
numPulse = deltaWeightNormalized * maxNumLevelLTD;
if (nonlinearWrite) {
xPulse = InvMeasuredLTP(conductance, maxNumLevelLTP, dataConductanceLTP);
conductanceNew = MeasuredLTP(xPulse+numPulse, maxNumLevelLTP, dataConductanceLTP); // Use xPulse-numPulse here because the conductance will decrease with larger pulse position in dataConductanceLTD
} else {
xPulse = (conductance - minConductance) / (maxConductance - minConductance) * maxNumLevelLTD;
conductanceNew = (weight-minWeight)/(maxWeight-minWeight) * (maxConductance - minConductance) + minConductance;
if (conductanceNew < minConductance) {
conductanceNew = minConductance;
}
}
}
/* Write latency calculation */
if (!nonIdenticalPulse) { // Identical write pulse scheme
if (numPulse > 0) { // LTP
writeLatencyLTP = numPulse * writePulseWidthLTP;
writeLatencyLTD = 0;
} else { // LTD
writeLatencyLTP = 0;
writeLatencyLTD = -numPulse * writePulseWidthLTD;
}
} else { // Non-identical write pulse scheme
writeLatencyLTP = 0;
writeLatencyLTD = 0;
writeVoltageSquareSum = 0;
double V = 0;
double PW = 0;
if (numPulse > 0) { // LTP
for (int i=0; i<numPulse; i++) {
V = VinitLTP + (xPulse+i) * VstepLTP;
PW = PWinitLTP + (xPulse+i) * PWstepLTP;
writeLatencyLTP += PW;
writeVoltageSquareSum += V * V;
}
writePulseWidthLTP = writeLatencyLTP / numPulse;
} else { // LTD
for (int i=0; i<(-numPulse); i++) {
V = VinitLTD + (maxNumLevelLTD-xPulse+i) * VstepLTD;
PW = PWinitLTD + (maxNumLevelLTD-xPulse+i) * PWstepLTD;
writeLatencyLTD += PW;
writeVoltageSquareSum += V * V;
}
writePulseWidthLTD = writeLatencyLTD / (-numPulse);
}
}
conductancePrev = conductance;
conductance = conductanceNew;
}
/* SRAM */
SRAM::SRAM(int x, int y) {
this->x = x; this->y = y;
bit = 0; // Stored bit (1 or 0) (dynamic variable)
bitPrev = 0; // Previous bit
heightInFeatureSize = 14.6; // Cell height in terms of feature size (F)
widthInFeatureSize = 10; // Cell width in terms of feature size (F)
widthSRAMCellNMOS = 2.08; // Pull-down NMOS width in terms of feature size (F)
widthSRAMCellPMOS = 1.23; // Pull-up PMOS width in terms of feature size (F)
widthAccessCMOS = 1.31; // Access transistor width in terms of feature size (F)
minSenseVoltage = 0.1; // Minimum voltage difference (V) for sensing
readEnergy = 0; // Dynamic variable for calculation of read energy (J)
writeEnergy = 0; // Dynamic variable for calculation of write energy (J)
readEnergySRAMCell = 0; // Read energy (J) per SRAM cell (currently not used, it is included in the peripheral circuits of SRAM array in NeuroSim)
writeEnergySRAMCell = 0; // Write energy (J) per SRAM cell (will be obtained from NeuroSim)
}
/* Digital eNVM */
DigitalNVM::DigitalNVM(int x, int y) {
this->x = x; this->y = y; // Cell location: x (column) and y (row) start from index 0
bit = 0; // Stored bit (1 or 0) (dynamic variable), for internel check only and not be used for read
bitPrev = 0; // Previous bit
maxConductance = 5e-6; // Maximum cell conductance (S)
minConductance = 100e-9; // Minimum cell conductance (S)
avgMaxConductance = maxConductance; // Average maximum cell conductance (S)
avgMinConductance = minConductance; // Average minimum cell conductance (S)
conductance = minConductance; // Current conductance (S) (dynamic variable)
conductancePrev = conductance; // Previous conductance (S) (dynamic variable)
readVoltage = 0.5; // On-chip read voltage (Vr) (V)
readPulseWidth = 5e-9; // Read pulse width (s) (will be determined by S/A)
writeVoltageLTP = 2.5; // Write voltage (V) for LTP or weight increase
writeVoltageLTD = 2.5; // Write voltage (V) for LTD or weight decrease
writePulseWidthLTP = 10e-9; // Write pulse width (s) for LTP or weight increase
writePulseWidthLTD = 10e-9; // Write pulse width (s) for LTD or weight decrease
readEnergy = 0; // Read pulse width (s) (currently not used)
writeEnergy = 0; // Dynamic variable for calculation of write energy (J)
cmosAccess = true; // True: Pseudo-crossbar (1T1R), false: cross-point
parallelRead = false; // if it is a parallel readout scheme
resistanceAccess = 15e3; // The resistance of transistor (Ohm) in Pseudo-crossbar array when turned ON
nonlinearIV = false; // Consider I-V nonlinearity or not (Currently for cross-point array only)
NL = 10; // Nonlinearity in write scheme (the current ratio between Vw and Vw/2), assuming for the LTP side
if (nonlinearIV) { // Currently for cross-point array only
double Vr_exp = readVoltage; // XXX: Modify this value to Vr in the reported measurement data (can be different than readVoltage)
// Calculation of conductance at on-chip Vr
maxConductance = NonlinearConductance(maxConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
minConductance = NonlinearConductance(minConductance, NL, writeVoltageLTP, Vr_exp, readVoltage);
}
readNoise = false; // Consider read noise or not
sigmaReadNoise = 0.25; // Sigma of read noise in gaussian distribution
gaussian_dist = new std::normal_distribution<double>(0, sigmaReadNoise); // Set up mean and stddev for read noise
if(cmosAccess){ // the reference current for 1T1R cell, should include the resistance
double Rmax=1/maxConductance;
double Rmin=1/minConductance;
refCurrent = readVoltage/(0.5*(Rmax+Rmin+2*resistanceAccess));
}
else { // the reference current for cross-point array
refCurrent = readVoltage * (avgMaxConductance + avgMinConductance) / 2; // Set up reference current for sensing
}
/* Conductance range variation */
conductanceRangeVar =false; // Consider variation of conductance range or not
maxConductanceVar = 0.01*maxConductance; // Sigma of maxConductance variation (S)
minConductanceVar = 0.01*minConductance; // Sigma of minConductance variation (S)
std::mt19937 localGen;
localGen.seed(std::time(0));
gaussian_dist_maxConductance = new std::normal_distribution<double>(0, maxConductanceVar);
gaussian_dist_minConductance = new std::normal_distribution<double>(0, minConductanceVar);
if (conductanceRangeVar) {
maxConductance += (*gaussian_dist_maxConductance)(localGen);
minConductance += (*gaussian_dist_minConductance)(localGen);
if (minConductance >= maxConductance || maxConductance < 0 || minConductance < 0 ) { // Conductance variation check
puts("[Error] Conductance variation check not passed. The variation may be too large.");
exit(-1);
}
}
heightInFeatureSize = cmosAccess? 4 : 2; // Cell height = 4F (1T1R) or 2F (cross-point)
widthInFeatureSize = cmosAccess? 4 : 2; // Cell width = 4F (1T1R) or 2F (cross-point)
}
double DigitalNVM::Read(double voltage) { // Return read current (A)
extern std::mt19937 gen;
if (nonlinearIV) {
// TODO: nonlinear read
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
} else {
if (readNoise) {
return voltage * conductance * (1 + (*gaussian_dist)(gen));
} else {
return voltage * conductance;
}
}
}
void DigitalNVM::Write(int bitNew, double wireCapCol) {
double conductanceNew;
if (nonlinearIV) { // Currently only for cross-point array
if (bitNew == 1) { // SET
conductanceNew = maxConductance;
} else { // RESET
conductanceNew = minConductance;
}
/* I-V nonlinearity */
conductanceAtVwLTP = NonlinearConductance(conductance, NL, writeVoltageLTP, readVoltage, writeVoltageLTP);
conductanceAtHalfVwLTP = NonlinearConductance(conductance, NL, writeVoltageLTP, readVoltage, writeVoltageLTP/2);
conductanceAtVwLTD = NonlinearConductance(conductance, NL, writeVoltageLTD, readVoltage, writeVoltageLTD);
conductanceAtHalfVwLTD = NonlinearConductance(conductance, NL, writeVoltageLTD, readVoltage, writeVoltageLTD/2);
double conductanceNewAtVwLTP = NonlinearConductance(conductanceNew, NL, writeVoltageLTP, readVoltage, writeVoltageLTP);
double conductanceNewAtHalfVwLTP = NonlinearConductance(conductanceNew, NL, writeVoltageLTP, readVoltage, writeVoltageLTP/2);
double conductanceNewAtVwLTD = NonlinearConductance(conductanceNew, NL, writeVoltageLTD, readVoltage, writeVoltageLTD);
double conductanceNewAtHalfVwLTD = NonlinearConductance(conductanceNew, NL, writeVoltageLTD, readVoltage, writeVoltageLTD/2);
if (bitNew == 1 && bit == 0) { // SET
writeEnergy = writeVoltageLTP * writeVoltageLTP * (conductanceAtVwLTP + conductanceNewAtVwLTP)/2 * writePulseWidthLTP; // Selected cell in SET phase
writeEnergy += writeVoltageLTP * writeVoltageLTP * wireCapCol; // Charging the cap of selected columns
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductanceNewAtHalfVwLTD * writePulseWidthLTD; // Half-selected during RESET phase (use the new conductance value if SET phase is before RESET phase)
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
} else if (bitNew == 0 && bit == 1) { // RESET
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductanceAtHalfVwLTP * writePulseWidthLTP; // Half-selected during SET phase (use the old conductance value if SET phase is before RESET phase)
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
writeEnergy += writeVoltageLTD * writeVoltageLTD * wireCapCol; // Charging the cap of selected columns
writeEnergy += writeVoltageLTD * writeVoltageLTD * (conductanceAtVwLTD + conductanceNewAtVwLTD)/2 * writePulseWidthLTD; // Selected cell in RESET phase
} else { // Half-selected
writeEnergy = writeVoltageLTP/2 * writeVoltageLTP/2 * conductanceAtHalfVwLTP * writePulseWidthLTP; // Half-selected during SET phase
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductanceAtHalfVwLTD * writePulseWidthLTD; // Half-selected during RESET phase
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
}
/* Update the nonlinear conductances with new values */
conductanceAtVwLTP = conductanceNewAtVwLTP;
conductanceAtHalfVwLTP = conductanceNewAtHalfVwLTP;
conductanceAtVwLTD = conductanceNewAtVwLTD;
conductanceAtHalfVwLTD = conductanceNewAtHalfVwLTD;
} else { // If not cross-point array or not considering I-V nonlinearity
if (bitNew == 1 && bit == 0) { // SET
/* Normal 1T1R */
conductanceNew = maxConductance;
writeEnergy = writeVoltageLTP * writeVoltageLTP * (conductance + conductanceNew)/2 * writePulseWidthLTP; // Selected cell in SET phase
writeEnergy += writeVoltageLTP * writeVoltageLTP * wireCapCol; // Charging the cap of selected columns
if (!cmosAccess) { // Cross-point
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * conductanceNew * writePulseWidthLTD; // Half-selected during RESET phase (use the new conductance value if SET phase is before RESET phase)
writeEnergy += writeVoltageLTD/2 * writeVoltageLTD/2 * wireCapCol;
}
} else if (bitNew == 0 && bit == 1) { // RESET
/* Normal 1T1R */
conductanceNew = minConductance;
writeEnergy = writeVoltageLTD * writeVoltageLTD * (conductance + conductanceNew)/2 * writePulseWidthLTD; // Selected cell in RESET phase
writeEnergy += writeVoltageLTD * writeVoltageLTD * wireCapCol; // Charging the cap of selected columns
if (!cmosAccess) { // Cross-point
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * conductance * writePulseWidthLTP; // Half-selected during SET phase (use the old conductance value if SET phase is before RESET phase)
writeEnergy += writeVoltageLTP/2 * writeVoltageLTP/2 * wireCapCol;
}
} else { // No operation
conductanceNew = (bitNew == 1)? maxConductance : minConductance;
}
}
conductancePrev = conductance;
conductance = conductanceNew;
bitPrev = bit;
bit = bitNew;
}