-
-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathhyperpoint.cpp
1972 lines (1682 loc) · 54.8 KB
/
hyperpoint.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Hyperbolic Rogue -- basic computations in non-Euclidean geometry
// Copyright (C) 2011-2019 Zeno Rogue, see 'hyper.cpp' for details
/** \file hyperpoint.cpp
* \brief basic computations in non-Euclidean geometry
*
* This implements hyperpoint (a point in non-Euclidean space), transmatrix (a transformation matrix),
* and various basic routines related to them: rotations, translations, inverses and determinants, etc.
* For nonisotropic geometries, it rather refers to nonisotropic.cpp.
*/
#include "hyper.h"
namespace hr {
#if HDR
#ifndef M_PI
#define M_PI 3.14159265358979
#endif
static constexpr ld A_PI = M_PI;
static constexpr ld TAU = 2 * A_PI;
static constexpr ld degree = A_PI / 180;
static const ld golden_phi = (sqrt(5)+1)/2;
static const ld log_golden_phi = log(golden_phi);
constexpr ld operator"" _deg(long double deg) { return deg * A_PI / 180; }
#endif
eGeometry geometry;
eVariation variation;
#if HDR
/** \brief A point in our continuous space
*
* Originally used for representing points in the hyperbolic plane.
* Currently used for all kinds of supported spaces, as well as
* for all vector spaces (up to 4 dimensions). We are using
* the normalized homogeneous coordinates, which allows us to work with most
* geometries in HyperRogue in a uniform way.
* In the hyperbolic plane, this is the Minkowski hyperboloid model:
* (x,y,z) such that x*x+y*y-z*z == -1 and z > 0.
*
* In spherical geometry, we have x*x+y*y+z*z == 1.
*
* In Euclidean geometry, we have z = 1.
*
* In isotropic 3D geometries an extra coordinate is added.
*
* In nonisotropic coordinates h[3] == 1.
*
* In product geometries the 'z' coordinate is modelled by multiplying all
* three coordinates with exp(z).
*
*/
struct hyperpoint : array<ld, MAXMDIM> {
hyperpoint() {}
#if MAXMDIM == 4
constexpr hyperpoint(ld x, ld y, ld z, ld w) : array<ld, MAXMDIM> {{x,y,z,w}} {}
#else
constexpr hyperpoint(ld x, ld y, ld z, ld w) : array<ld, MAXMDIM> {{x,y,z}} {}
#endif
inline hyperpoint& operator *= (ld d) {
for(int i=0; i<MXDIM; i++) self[i] *= d;
return self;
}
inline hyperpoint& operator /= (ld d) {
for(int i=0; i<MXDIM; i++) self[i] /= d;
return self;
}
inline hyperpoint& operator += (const hyperpoint h2) {
for(int i=0; i<MXDIM; i++) self[i] += h2[i];
return self;
}
inline hyperpoint& operator -= (const hyperpoint h2) {
for(int i=0; i<MXDIM; i++) self[i] -= h2[i];
return self;
}
inline friend hyperpoint operator * (ld d, hyperpoint h) { return h *= d; }
inline friend hyperpoint operator * (hyperpoint h, ld d) { return h *= d; }
inline friend hyperpoint operator / (hyperpoint h, ld d) { return h /= d; }
inline friend hyperpoint operator + (hyperpoint h, hyperpoint h2) { return h += h2; }
inline friend hyperpoint operator - (hyperpoint h, hyperpoint h2) { return h -= h2; }
inline friend hyperpoint operator - (hyperpoint h) { return h * -1; }
// cross product
inline friend hyperpoint operator ^ (hyperpoint h1, hyperpoint h2) {
return hyperpoint(
h1[1] * h2[2] - h1[2] * h2[1],
h1[2] * h2[0] - h1[0] * h2[2],
h1[0] * h2[1] - h1[1] * h2[0],
0
);
}
friend ld dot_d(int c, hyperpoint h1, hyperpoint h2) {
ld sum = 0;
for(int i=0; i<c; i++) sum += h1[i] * h2[i];
return sum;
}
// Euclidean inner product
inline friend ld operator | (hyperpoint h1, hyperpoint h2) {
return dot_d(MXDIM, h1, h2);
}
};
/** \brief A matrix acting on hr::hyperpoint
*
* Since we are using homogeneous coordinates for hr::hyperpoint,
* rotations and translations can be represented
* as matrix multiplications. Other applications of matrices in HyperRogue
* (in dimension up to 4) are also implemented using transmatrix.
*/
struct transmatrix {
ld tab[MAXMDIM][MAXMDIM];
hyperpoint& operator [] (int i) { return (hyperpoint&)tab[i][0]; }
const hyperpoint& operator [] (int i) const { return (const hyperpoint&)tab[i]; }
inline friend hyperpoint operator * (const transmatrix& T, const hyperpoint& H) {
hyperpoint z;
for(int i=0; i<MXDIM; i++) {
z[i] = 0;
for(int j=0; j<MXDIM; j++) z[i] += T[i][j] * H[j];
}
return z;
}
inline friend transmatrix operator * (const transmatrix& T, const transmatrix& U) {
transmatrix R;
for(int i=0; i<MXDIM; i++) for(int j=0; j<MXDIM; j++) {
R[i][j] = 0;
for(int k=0; k<MXDIM; k++)
R[i][j] += T[i][k] * U[k][j];
}
return R;
}
};
/** @brief hyperpoint with shift
* shift has two uses:
* (1) in the 'universal cover of SL' geometry, shift is used for the extra angular coordinate
* (2) in band models, shift is used to draw faraway points correctly
*/
struct shiftpoint {
hyperpoint h;
ld shift;
shiftpoint() {}
shiftpoint(hyperpoint _h, ld _shift) : h(_h), shift(_shift) {}
ld& operator [] (int i) { return h[i]; }
const ld& operator [] (int i) const { return h[i]; }
inline friend shiftpoint operator + (const shiftpoint& h, const hyperpoint& h2) {
return shiftpoint{h.h+h2, h.shift};
}
inline friend shiftpoint operator - (const shiftpoint& h, const hyperpoint& h2) {
return shiftpoint{h.h-h2, h.shift};
}
};
inline shiftpoint shiftless(const hyperpoint& h, ld shift = 0) {
shiftpoint res; res.h = h; res.shift = shift; return res;
}
struct shiftmatrix {
transmatrix T;
ld shift;
shiftmatrix() {}
shiftmatrix(const transmatrix& _h, ld _shift) : T(_h), shift(_shift) {}
hyperpoint& operator [] (int i) { return T[i]; }
const hyperpoint& operator [] (int i) const { return T[i]; }
inline friend shiftpoint operator * (const shiftmatrix& T, const hyperpoint& h) {
return shiftpoint{T.T*h, T.shift};
}
inline friend shiftmatrix operator * (const shiftmatrix& T, const transmatrix& U) {
return shiftmatrix{T.T*U, T.shift};
}
};
struct shiftmatrix_or_null : shiftmatrix {
bool is_null;
shiftmatrix_or_null& operator = (const shiftmatrix& T) { ((shiftmatrix&) self) = T; is_null = false; return self; }
shiftmatrix_or_null() { is_null = true; }
};
inline shiftmatrix shiftless(const transmatrix& T, ld shift = 0) {
shiftmatrix res; res.T = T; res.shift = shift; return res;
}
/** returns a diagonal matrix */
constexpr transmatrix diag(ld a, ld b, ld c, ld d) {
#if MAXMDIM==3
return transmatrix{{{a,0,0}, {0,b,0}, {0,0,c}}};
#else
return transmatrix{{{a,0,0,0}, {0,b,0,0}, {0,0,c,0}, {0,0,0,d}}};
#endif
}
constexpr hyperpoint Hypc = hyperpoint(0, 0, 0, 0);
/** identity matrix */
constexpr transmatrix Id = diag(1,1,1,1);
/** zero matrix */
constexpr transmatrix Zero = diag(0,0,0,0);
/** a transmatrix with 2D and 3D version, useful for configuration */
struct trans23 {
transmatrix v2, v3;
transmatrix& get() { return MDIM == 3 ? v2 : v3; }
const transmatrix& get() const { return MDIM == 3 ? v2 : v3; }
trans23() { v2 = Id; v3 = Id; }
trans23(const transmatrix& T) { v2 = T; v3 = T; }
trans23(const transmatrix& T2, const transmatrix& T3) { v2 = T2; v3 = T3; }
bool operator == (const trans23& b) const;
bool operator != (const trans23& b) const { return !(self == b); }
trans23 operator * (trans23 T) {
trans23 t;
auto& dim = cginf.g.homogeneous_dimension;
dynamicval<int> d1(dim, dim);
dim = 3; t.v2 = v2 * T.v2;
dim = 4; t.v3 = v3 * T.v3;
return t;
}
friend trans23 operator * (transmatrix M, trans23 T) {
trans23 t(M);
return t * T;
}
};
/** mirror image */
constexpr transmatrix Mirror = diag(1,-1,1,1);
/** mirror image: flip in the Y coordinate */
constexpr transmatrix MirrorY = diag(1,-1,1,1);
/** mirror image: flip in the X coordinate */
constexpr transmatrix MirrorX = diag(-1,1,1,1);
/** mirror image: flip in the Z coordinate */
constexpr transmatrix MirrorZ = diag(1,1,-1,1);
/** rotate by PI in the XY plane */
constexpr transmatrix pispin = diag(-1,-1,1,1);
/** central symmetry matrix */
constexpr transmatrix centralsym = diag(-1,-1,-1,-1);
inline hyperpoint hpxyz(ld x, ld y, ld z) { return MDIM == 3 ? hyperpoint(x,y,z,0) : hyperpoint(x,y,0,z); }
inline hyperpoint hpxyz3(ld x, ld y, ld z, ld w) { return MDIM == 3 ? hyperpoint(x,y,w,0) : hyperpoint(x,y,z,w); }
constexpr hyperpoint point3(ld x, ld y, ld z) { return hyperpoint(x,y,z,0); }
constexpr hyperpoint point30(ld x, ld y, ld z) { return hyperpoint(x,y,z,0); }
constexpr hyperpoint point31(ld x, ld y, ld z) { return hyperpoint(x,y,z,1); }
constexpr hyperpoint point2(ld x, ld y) { return hyperpoint(x,y,0,0); }
constexpr hyperpoint C02 = hyperpoint(0,0,1,0);
constexpr hyperpoint C03 = hyperpoint(0,0,0,1);
/** C0 is the origin in our space */
#define C0 (MDIM == 3 ? C02 : C03)
#endif
bool trans23::operator == (const trans23& b) const { return eqmatrix(v2, b.v2) && eqmatrix(v3, b.v3); }
// basic functions and types
//===========================
EX ld squar(ld x) { return x*x; }
EX int sig(int z) { return ginf[geometry].g.sig[z]; }
EX int curvature() {
switch(cgclass) {
case gcEuclid: return 0;
case gcHyperbolic: return -1;
case gcSphere: return 1;
case gcProduct: return PIU(curvature());
default: return 0;
}
}
EX ld sin_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return sinh(x);
case gcSphere: return sin(x);
case gcProduct: return PIU(sin_auto(x));
case gcSL2: return sinh(x);
default: return x;
}
}
EX ld asin_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return asinh(x);
case gcSphere: return asin(x);
case gcProduct: return PIU(asin_auto(x));
case gcSL2: return asinh(x);
default: return x;
}
}
EX ld acos_auto(ld x) {
switch(cgclass) {
case gcHyperbolic: return acosh(x);
case gcSphere: return acos(x);
case gcProduct: return PIU(acos_auto(x));
case gcSL2: return acosh(x);
default: return x;
}
}
/** \brief volume of a three-dimensional ball of radius r in the current isotropic geometry */
EX ld volume_auto(ld r) {
switch(cgclass) {
case gcEuclid: return r * r * r * 240._deg;
case gcHyperbolic: return M_PI * (sinh(2*r) - 2 * r);
case gcSphere: return M_PI * (2 * r - sin(2*r));
default: return 0;
}
}
/** \brief area of a circle of radius r in the current isotropic geometry */
EX ld area_auto(ld r) {
switch(cgclass) {
case gcEuclid: return r * r * M_PI;
case gcHyperbolic: return TAU * (cosh(r) - 1);
case gcSphere: return TAU * (1 - cos(r));
default: return 0;
}
}
/** \brief volume in 3D, area in 2D */
EX ld wvolarea_auto(ld r) {
if(WDIM == 3) return volume_auto(r);
else return area_auto(r);
}
EX ld asin_clamp(ld x) { return x>1 ? 90._deg : x<-1 ? -90._deg : std::isnan(x) ? 0 : asin(x); }
EX ld acos_clamp(ld x) { return x>1 ? 0 : x<-1 ? M_PI : std::isnan(x) ? 0 : acos(x); }
EX ld asin_auto_clamp(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return asinh(x);
case gcSL2: return asinh(x);
case gcSphere: return asin_clamp(x);
case gcProduct: return PIU(asin_auto_clamp(x));
default: return x;
}
}
EX ld acos_auto_clamp(ld x) {
switch(cgclass) {
case gcHyperbolic: return x < 1 ? 0 : acosh(x);
case gcSL2: return x < 1 ? 0 : acosh(x);
case gcSphere: return acos_clamp(x);
case gcProduct: return PIU(acos_auto_clamp(x));
default: return x;
}
}
EX ld cos_auto(ld x) {
switch(cgclass) {
case gcEuclid: return 1;
case gcHyperbolic: return cosh(x);
case gcSL2: return cosh(x);
case gcSphere: return cos(x);
case gcProduct: return PIU(cos_auto(x));
default: return 1;
}
}
EX ld tan_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return tanh(x);
case gcSphere: return tan(x);
case gcProduct: return PIU(tan_auto(x));
case gcSL2: return tanh(x);
default: return 1;
}
}
EX ld atan_auto(ld x) {
switch(cgclass) {
case gcEuclid: return x;
case gcHyperbolic: return atanh(x);
case gcSphere: return atan(x);
case gcProduct: return PIU(atan_auto(x));
case gcSL2: return atanh(x);
default: return x;
}
}
EX ld atan2_auto(ld y, ld x) {
switch(cgclass) {
case gcEuclid: return y/x;
case gcHyperbolic: return atanh(y/x);
case gcSL2: return atanh(y/x);
case gcSphere: return atan2(y, x);
case gcProduct: return PIU(atan2_auto(y, x));
default: return y/x;
}
}
/** This function returns the length of the edge opposite the angle alpha in
* a triangle with angles alpha, beta, gamma. This is called the cosine rule,
* and of course works only in non-Euclidean geometry. */
EX ld edge_of_triangle_with_angles(ld alpha, ld beta, ld gamma) {
return acos_auto((cos(alpha) + cos(beta) * cos(gamma)) / (sin(beta) * sin(gamma)));
}
EX hyperpoint hpxy(ld x, ld y) {
if(embedded_plane) {
geom3::light_flip(true);
hyperpoint h = hpxy(x, y);
geom3::light_flip(false);
return cgi.emb->base_to_actual(h);
}
if(sl2) return hyperpoint(x, y, 0, sqrt(1+x*x+y*y));
if(mtwisted) return hyperpoint(x, y, 0, sqrt(1-x*x-y*y));
return PIU(hpxyz(x,y, translatable ? 1 : sphere ? sqrt(1-x*x-y*y) : sqrt(1+x*x+y*y)));
}
EX hyperpoint hpxy3(ld x, ld y, ld z) {
return hpxyz3(x,y,z, sl2 ? sqrt(1+x*x+y*y-z*z) :translatable ? 1 : sphere ? sqrt(1-x*x-y*y-z*z) : sqrt(1+x*x+y*y+z*z));
}
#if HDR
// a point (I hope this number needs no comments ;) )
constexpr hyperpoint Cx12 = hyperpoint(1,0,1.41421356237,0);
constexpr hyperpoint Cx13 = hyperpoint(1,0,0,1.41421356237);
#define Cx1 (GDIM==2?Cx12:Cx13)
#endif
EX bool zero_d(int d, hyperpoint h) {
for(int i=0; i<d; i++) if(h[i]) return false;
return true;
}
/** inner product in the current geometry */
EX ld geo_inner(const hyperpoint &h1, const hyperpoint &h2) {
ld res = 0;
for(int i=0; i<MDIM; i++) res += h1[i] * h2[i] * sig(i);
return res;
}
/** this function returns approximate square of distance between two points
* (in the spherical analogy, this would be the distance in the 3D space,
* through the interior, not on the surface)
* also used to verify whether a point h1 is on the hyperbolic plane by using Hypc for h2
*/
EX ld intval(const hyperpoint &h1, const hyperpoint &h2) {
ld res = 0;
for(int i=0; i<MDIM; i++) res += squar(h1[i] - h2[i]) * sig(i);
if(elliptic) {
ld res2 = 0;
for(int i=0; i<MDIM; i++) res2 += squar(h1[i] + h2[i]) * sig(i);
return min(res, res2);
}
return res;
}
EX ld quickdist(const hyperpoint &h1, const hyperpoint &h2) {
if(gproduct) return hdist(h1, h2);
return intval(h1, h2);
}
/** square Euclidean hypotenuse in the first d dimensions */
EX ld sqhypot_d(int d, const hyperpoint& h) {
ld sum = 0;
for(int i=0; i<d; i++) sum += h[i]*h[i];
return sum;
}
/** Euclidean hypotenuse in the first d dimensions */
EX ld hypot_d(int d, const hyperpoint& h) {
return sqrt(sqhypot_d(d, h));
}
/** @brief h1 and h2 define a line; to_other_side(h1,h2)*x is x moved orthogonally to this line, by double the distance from C0
* (I suppose it could be done better)
*/
EX transmatrix to_other_side(hyperpoint h1, hyperpoint h2) {
if(cgi.emb->is_sph_in_low() && !geom3::flipped) {
geom3::light_flip(true);
h1 = normalize(h1);
h2 = normalize(h2);
transmatrix T = to_other_side(h1, h2);
fix4(T);
geom3::light_flip(false);
return T;
}
if(sol && meuclid) {
/* works in 4x4... */
return gpushxto0(h1) * gpushxto0(h2);
}
ld d = hdist(h1, h2);
hyperpoint v;
if(euclid)
v = (h2 - h1) / d;
else
v = (h1 * cos_auto(d) - h2) / sin_auto(d);
ld d1;
if(euclid)
d1 = -(v|h1) / (v|v);
else
d1 = atan_auto(-v[LDIM] / h1[LDIM]);
hyperpoint hm = h1 * cos_auto(d1) + (sphere ? -1 : 1) * v * sin_auto(d1);
return rspintox(hm) * xpush(-hdist0(hm) * 2) * spintox(hm);
}
/** @brief positive for a material vertex, 0 for ideal vertex, negative for ultra-ideal vertex */
EX ld material(const hyperpoint& h) {
if(sphere || in_s2xe()) return intval(h, Hypc);
else if(hyperbolic || in_h2xe()) return -intval(h, Hypc);
#if MAXMDIM >= 4
else if(sl2) return h[2]*h[2] + h[3]*h[3] - h[0]*h[0] - h[1]*h[1];
#endif
else return h[LDIM];
}
EX int safe_classify_ideals(hyperpoint h) {
if(hyperbolic || in_h2xe()) {
h /= h[LDIM];
ld x = MDIM == 3 ? 1 - (h[0] * h[0] + h[1] * h[1]) : 1 - (h[0] * h[0] + h[1] * h[1] + h[2] * h[2]);
if(x > 1e-6) return 1;
if(x < -1e-6) return -1;
return 0;
}
return 1;
}
EX ld ideal_limit = 10;
EX ld ideal_each = degree;
EX hyperpoint safe_approximation_of_ideal(hyperpoint h) {
return towards_inf(C0, h, ideal_limit);
}
/** the point on the line ab which is closest to zero. Might not be normalized. Works even if a and b are (ultra)ideal */
EX hyperpoint closest_to_zero(hyperpoint a, hyperpoint b) {
if(sqhypot_d(MDIM, a-b) < 1e-9) return a;
if(isnan(a[0])) return a;
a /= a[LDIM];
b /= b[LDIM];
ld mul_a = 0, mul_b = 0;
for(int i=0; i<LDIM; i++) {
ld z = a[i] - b[i];
mul_a += a[i] * z;
mul_b -= b[i] * z;
}
return (mul_b * a + mul_a * b) / (mul_a + mul_b);
}
/** should be called get_lof */
EX ld zlevel(const hyperpoint &h) {
if(sl2) return sqrt(-intval(h, Hypc));
else if(translatable) return h[LDIM];
else if(sphere) return sqrt(intval(h, Hypc));
else if(in_e2xe()) return log(h[2]);
else if(gproduct) return log(sqrt(abs(intval(h, Hypc)))); /* abs works with both underlying spherical and hyperbolic */
else return (h[LDIM] < 0 ? -1 : 1) * sqrt(-intval(h, Hypc));
}
EX ld hypot_auto(ld x, ld y) {
switch(cgclass) {
case gcEuclid:
return hypot(x, y);
case gcHyperbolic:
return acosh(cosh(x) * cosh(y));
case gcSphere:
return acos(cos(x) * cos(y));
default:
return hypot(x, y);
}
}
/** normalize the homogeneous coordinates */
EX hyperpoint normalize(hyperpoint H) {
if(gproduct) return H;
ld Z = zlevel(H);
for(int c=0; c<MXDIM; c++) H[c] /= Z;
return H;
}
/** like normalize but makes (ultra)ideal points material */
EX hyperpoint ultra_normalize(hyperpoint H) {
if(material(H) <= 0) {
H[LDIM] = hypot_d(LDIM, H) + 1e-10;
}
return normalize(H);
}
/** get the center of the line segment from H1 to H2 */
EX hyperpoint mid(const hyperpoint& H1, const hyperpoint& H2) {
if(gproduct) {
auto d1 = product_decompose(H1);
auto d2 = product_decompose(H2);
hyperpoint res1 = PIU( mid(d1.second, d2.second) );
hyperpoint res = res1 * exp((d1.first + d2.first) / 2);
return res;
}
return normalize(H1 + H2);
}
EX shiftpoint mid(const shiftpoint& H1, const shiftpoint& H2) {
return shiftless(mid(H1.h, H2.h), (H1.shift + H2.shift)/2);
}
/** like mid, but take 3D into account */
EX hyperpoint midz(const hyperpoint& H1, const hyperpoint& H2) {
if(gproduct) return mid(H1, H2);
hyperpoint H3 = H1 + H2;
ld Z = 2;
if(!euclid) Z = zlevel(H3) * 2 / (zlevel(H1) + zlevel(H2));
for(int c=0; c<MXDIM; c++) H3[c] /= Z;
return H3;
}
// matrices
//==========
/** rotate by alpha degrees in the coordinates a, b */
EX transmatrix cspin(int a, int b, ld alpha) {
transmatrix T = Id;
T[a][a] = +cos(alpha); T[a][b] = +sin(alpha);
T[b][a] = -sin(alpha); T[b][b] = +cos(alpha);
return T;
}
EX transmatrix lorentz(int a, int b, ld v) {
transmatrix T = Id;
T[a][a] = T[b][b] = cosh(v);
T[a][b] = T[b][a] = sinh(v);
return T;
}
/** rotate by 90 degrees in the coordinates a, b */
EX transmatrix cspin90(int a, int b) {
transmatrix T = Id;
T[a][a] = 0; T[a][b] = 1;
T[b][a] = -1; T[b][b] = 0;
return T;
}
/** rotate by 180 degrees in the coordinates a, b */
EX transmatrix cspin180(int a, int b) {
transmatrix T = Id;
T[a][a] = T[b][b] = -1;
return T;
}
EX transmatrix random_spin3() {
ld alpha2 = asin(randd() * 2 - 1);
ld alpha = randd() * TAU;
ld alpha3 = randd() * TAU;
return cspin(0, 1, alpha) * cspin(0, 2, alpha2) * cspin(1, 2, alpha3);
}
EX transmatrix random_spin() {
if(WDIM == 2) return spin(randd() * TAU);
else return random_spin3();
}
EX transmatrix eupush(ld x, ld y) {
transmatrix T = Id;
T[0][LDIM] = x;
T[1][LDIM] = y;
return T;
}
EX transmatrix euclidean_translate(ld x, ld y, ld z) {
transmatrix T = Id;
T[0][LDIM] = x;
T[1][LDIM] = y;
T[2][LDIM] = z;
return T;
}
EX transmatrix euscale(ld x, ld y) {
transmatrix T = Id;
T[0][0] = x;
T[1][1] = y;
return T;
}
EX transmatrix euscale3(ld x, ld y, ld z) {
transmatrix T = Id;
T[0][0] = x;
T[1][1] = y;
T[2][2] = z;
return T;
}
EX transmatrix eupush(hyperpoint h, ld co IS(1)) {
if(nonisotropic) return nisot::translate(h, co);
if(hyperbolic) { return co ? parabolic13_at(deparabolic13(h)) : inverse(parabolic13_at(deparabolic13(h))); }
transmatrix T = Id;
for(int i=0; i<GDIM; i++) T[i][LDIM] = h[i] * co;
return T;
}
EX transmatrix eupush3(ld x, ld y, ld z) {
if(sl2) return slr::translate(slr::xyz_point(x, y, z));
return eupush(point3(x, y, z));
}
EX transmatrix euscalezoom(hyperpoint h) {
transmatrix T = Id;
T[0][0] = h[0];
T[0][1] = -h[1];
T[1][0] = h[1];
T[1][1] = h[0];
return T;
}
EX transmatrix euaffine(hyperpoint h) {
transmatrix T = Id;
T[0][1] = h[0];
T[1][1] = exp(h[1]);
return T;
}
EX transmatrix cpush(int cid, ld alpha) {
if(gproduct && cid == 2)
return scale_matrix(Id, exp(alpha));
transmatrix T = Id;
if(nonisotropic)
return eupush3(cid == 0 ? alpha : 0, cid == 1 ? alpha : 0, cid == 2 ? alpha : 0);
T[LDIM][LDIM] = T[cid][cid] = cos_auto(alpha);
T[cid][LDIM] = sin_auto(alpha);
T[LDIM][cid] = -curvature() * sin_auto(alpha);
return T;
}
EX transmatrix cmirror(int cid) {
transmatrix T = Id;
T[cid][cid] = -1;
return T;
}
// push alpha units to the right
EX transmatrix xpush(ld alpha) { return cpush(0, alpha); }
EX bool eqmatrix(transmatrix A, transmatrix B, ld eps IS(.01)) {
for(int i=0; i<MXDIM; i++)
for(int j=0; j<MXDIM; j++)
if(std::abs(A[i][j] - B[i][j]) > eps)
return false;
return true;
}
// push alpha units vertically
EX transmatrix ypush(ld alpha) { return cpush(1, alpha); }
EX transmatrix zpush(ld z) { return cpush(2, z); }
EX transmatrix matrix3(ld a, ld b, ld c, ld d, ld e, ld f, ld g, ld h, ld i) {
#if MAXMDIM==3
return transmatrix {{{a,b,c},{d,e,f},{g,h,i}}};
#else
if(GDIM == 2 || MDIM == 3)
return transmatrix {{{a,b,c,0},{d,e,f,0},{g,h,i,0},{0,0,0,1}}};
else
return transmatrix {{{a,b,0,c},{d,e,0,f},{0,0,1,0},{g,h,0,i}}};
#endif
}
EX transmatrix matrix4(ld a, ld b, ld c, ld d, ld e, ld f, ld g, ld h, ld i, ld j, ld k, ld l, ld m, ld n, ld o, ld p) {
#if MAXMDIM==3
return transmatrix {{{a,b,d},{e,f,h},{m,n,p}}};
#else
return transmatrix {{{a,b,c,d},{e,f,g,h},{i,j,k,l},{m,n,o,p}}};
#endif
}
EX transmatrix parabolic1(ld u) {
if(euclid)
return ypush(u);
else if(cgi.emb->is_hyp_in_solnih() && !geom3::flipped) {
return ypush(u);
}
else {
ld diag = u*u/2;
return matrix3(
-diag+1, u, diag,
-u, 1, u,
-diag, u, diag+1
);
}
}
EX transmatrix parabolic13(ld u, ld v) {
if(euclid)
return eupush3(0, u, v);
else if(cgi.emb->is_euc_in_hyp()) {
ld diag = (u*u+v*v)/2;
return matrix4(
1, 0, -u, u,
0, 1, -v, v,
u, v, -diag+1, diag,
u, v, -diag, diag+1
);
}
else {
ld diag = (u*u+v*v)/2;
return matrix4(
-diag+1, u, v, diag,
-u, 1, 0, u,
-v, 0, 1, v,
-diag, u, v, diag+1
);
}
}
EX hyperpoint kleinize(hyperpoint h) {
#if MAXMDIM == 3
return point3(h[0]/h[2], h[1]/h[2], 1);
#else
if(GDIM == 2) return point3(h[0]/h[2], h[1]/h[2], 1);
else return point31(h[0]/h[3], h[1]/h[3], h[2]/h[3]);
#endif
}
EX hyperpoint deparabolic13(hyperpoint h) {
if(euclid) return h;
if(cgi.emb->is_euc_in_hyp()) {
h /= (1 + h[LDIM]);
h[2] -= 1;
h /= sqhypot_d(LDIM, h);
h[2] += .5;
return point3(h[0] * 2, h[1] * 2, log(2) + log(-h[2]));
}
h /= (1 + h[LDIM]);
h[0] -= 1;
h /= sqhypot_d(LDIM, h);
h[0] += .5;
return point3(log(2) + log(-h[0]), h[1] * 2, LDIM==3 ? h[2] * 2 : 0);
}
EX hyperpoint parabolic13(hyperpoint h) {
if(euclid) return h;
else if(cgi.emb->is_euc_in_hyp()) {
return parabolic13(h[0], h[1]) * cpush0(2, h[2]);
}
else if(LDIM == 3)
return parabolic13(h[1], h[2]) * xpush0(h[0]);
else
return parabolic1(h[1]) * xpush0(h[0]);
}
EX transmatrix parabolic13_at(hyperpoint h) {
if(euclid) return rgpushxto0(h);
else if(cgi.emb->is_euc_in_hyp()) {
return parabolic13(h[0], h[1]) * cpush(2, h[2]);
}
else if(LDIM == 3)
return parabolic13(h[1], h[2]) * xpush(h[0]);
else
return parabolic1(h[1]) * xpush(h[0]);
}
EX transmatrix spintoc(const hyperpoint& H, int t, int f) {
transmatrix T = Id;
ld R = hypot(H[f], H[t]);
if(R >= 1e-15) {
T[t][t] = +H[t]/R; T[t][f] = +H[f]/R;
T[f][t] = -H[f]/R; T[f][f] = +H[t]/R;
}
return T;
}
/** an Euclidean rotation in the axes (t,f) which rotates
* the point H to the positive 't' axis
*/
EX transmatrix rspintoc(const hyperpoint& H, int t, int f) {
transmatrix T = Id;
ld R = hypot(H[f], H[t]);
if(R >= 1e-15) {
T[t][t] = +H[t]/R; T[t][f] = -H[f]/R;
T[f][t] = +H[f]/R; T[f][f] = +H[t]/R;
}
return T;
}
/** an isometry which takes the point H to the positive X axis
* \see rspintox
*/
EX transmatrix spintox(const hyperpoint& H) {
if(GDIM == 2 || gproduct) return spintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return spintoc(T1*H, 0, 2) * T1;
}
/** inverse of hr::spintox
*/
EX transmatrix rspintox(const hyperpoint& H) {
if(GDIM == 2 || gproduct) return rspintoc(H, 0, 1);
transmatrix T1 = spintoc(H, 0, 1);
return rspintoc(H, 0, 1) * rspintoc(T1*H, 0, 2);
}
/** for H on the X axis, this matrix pushes H to C0
* \see gpushxto0
*/
EX transmatrix pushxto0(const hyperpoint& H) {
transmatrix T = Id;
T[0][0] = +H[LDIM]; T[0][LDIM] = -H[0];
T[LDIM][0] = curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
return T;
}
/** set the i-th column of T to H */
EX void set_column(transmatrix& T, int i, const hyperpoint& H) {
for(int j=0; j<MXDIM; j++)
T[j][i] = H[j];
}
EX hyperpoint get_column(transmatrix& T, int i) {
hyperpoint h;
for(int j=0; j<MXDIM; j++)
h[j] = T[j][i];
return h;
}
/** build a matrix using the given vectors as columns */
EX transmatrix build_matrix(hyperpoint h1, hyperpoint h2, hyperpoint h3, hyperpoint h4) {
transmatrix T;
for(int i=0; i<MXDIM; i++) {
T[i][0] = h1[i],
T[i][1] = h2[i],
T[i][2] = h3[i];
if(MAXMDIM == 4) T[i][3] = h4[i];
}
return T;
}
/** for H on the X axis, this matrix pushes C0 to H
* \see rgpushxto0
*/
EX transmatrix rpushxto0(const hyperpoint& H) {
transmatrix T = Id;
T[0][0] = +H[LDIM]; T[0][LDIM] = H[0];
T[LDIM][0] = -curvature() * H[0]; T[LDIM][LDIM] = +H[LDIM];
return T;
}
EX transmatrix ggpushxto0(const hyperpoint& H, ld co) {
if(translatable)
return eupush(H, co);
if(gproduct) {
auto d = product_decompose(H);
return scale_matrix(PIU(ggpushxto0(d.second, co)), exp(d.first * co));
}
transmatrix res = Id;
if(sqhypot_d(GDIM, H) < 1e-16) return res;
ld fac = -curvature()/(H[LDIM]+1);
for(int i=0; i<GDIM; i++)
for(int j=0; j<GDIM; j++)
res[i][j] += H[i] * H[j] * fac;
for(int d=0; d<GDIM; d++)
res[d][LDIM] = co * H[d],
res[LDIM][d] = -curvature() * co * H[d];
res[LDIM][LDIM] = H[LDIM];
return res;
}
/** a translation matrix which takes H to 0 */