This repository has been archived by the owner on Mar 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathxyz_grid.py
429 lines (319 loc) · 15.9 KB
/
xyz_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from collections import namedtuple
from copy import copy
from itertools import permutations, chain
import json
import os
import random
import csv
from io import StringIO
import shutil
import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import re
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def writefile(dir, fn, contents, append=False, encoding='utf8'):
with open(os.path.join(dir, fn), 'w' if not append else 'a', encoding=encoding) as f:
f.write(contents)
def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
def apply_order(p, x, xs):
token_order = []
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
prompt_parts = []
# Split the prompt up, taking out the tokens
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
# Rebuild the prompt with the tokens in the order we want
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
def apply_sampler(p, x, xs):
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
p.sampler_name = sampler_name
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
p.sd_model = shared.sd_model
def confirm_checkpoints(p, xs):
for x in xs:
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def apply_hypernetwork(p, x, xs):
if x.lower() in ["", "none"]:
name = None
else:
name = hypernetwork.find_closest_hypernetwork_name(x)
if not name:
raise RuntimeError(f"Unknown hypernetwork: {x}")
hypernetwork.load_hypernetwork(name)
def apply_hypernetwork_strength(p, x, xs):
hypernetwork.apply_strength(x)
def confirm_hypernetworks(p, xs):
for x in xs:
if x.lower() in ["", "none"]:
continue
if not hypernetwork.find_closest_hypernetwork_name(x):
raise RuntimeError(f"Unknown hypernetwork: {x}")
def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
return x
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
def format_nothing(p, opt, x):
return ""
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
axis_options = [
AxisOption("Nothing", str, do_nothing, format_nothing, None),
AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, web_path):
data = {
'x_labels': [x for x in x_labels],
'y_labels': [y for y in y_labels],
'z_labels': [z for z in z_labels]
}
first_processed = None
state.job_count = len(xs) * len(ys) * len(zs) * p.n_iter
n = 0
data_arr = []
for iz, z in enumerate(zs):
data_arr.append([])
data_arr[iz] = []
for iy, y in enumerate(ys):
data_arr[iz].append([])
data_arr[iz][iy] = []
for ix, x in enumerate(xs):
if state.interrupted:
return None
n += 1
state.job = f"{n} out of {len(xs) * len(ys) * len(zs)}"
processed = cell(x, y, z)
if first_processed is None:
first_processed = processed
# Manually save image so we control the filename
try:
images.save_image(processed.images[0], p.outpath_samples, "", forced_filename=f"image-{iz}-{iy}-{ix}")
except Exception:
print(f"ERROR saving generated image to path: {p.outpath_samples}")
data_arr[iz][iy].append({
'info': processed.info,
'width': processed.width,
'height': processed.height,
'imgpath': f"image-{iz}-{iy}-{ix}.png"
})
data['images'] = data_arr
shutil.copy2('scripts/xyz_grid.template.html', os.path.join(web_path, 'index.html'))
# Can't load JSON directly from a file locally? Just wrap it in a function and include it like a .js file.
writefile(web_path, 'data.js', f"function xyzData() {{ return {json.dumps(data)}; }}")
return first_processed
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.hypernetwork = opts.sd_hypernetwork
self.model = shared.sd_model
def __exit__(self, exc_type, exc_value, tb):
modules.sd_models.reload_model_weights(self.model)
hypernetwork.load_hypernetwork(self.hypernetwork)
hypernetwork.apply_strength()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
class Script(scripts.Script):
def title(self):
return "X/Y/Z plot"
def ui(self, is_img2img):
current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img]
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, type="index", elem_id="x_type")
x_values = gr.Textbox(label="X values", lines=1)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, type="index", elem_id="y_type")
y_values = gr.Textbox(label="Y values", lines=1)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in current_axis_options], value=current_axis_options[7].label, type="index", elem_id="z_type")
z_values = gr.Textbox(label="Z values", lines=1)
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
return [x_type, x_values, y_type, y_values, z_type, z_values, no_fixed_seeds]
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, no_fixed_seeds):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
p.batch_size = 1
# Do not auto-save images, we need them in a specific format and the image filename is not returned :(
p.do_not_save_samples = True
p.do_not_save_grid = True
def process_axis(opt, vals):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
if opt.type == int:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
mc = re_range_count.fullmatch(val)
if m is not None:
start = int(m.group(1))
end = int(m.group(2))+1
step = int(m.group(3)) if m.group(3) is not None else 1
valslist_ext += list(range(start, end, step))
elif mc is not None:
start = int(mc.group(1))
end = int(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == float:
valslist_ext = []
for val in valslist:
m = re_range_float.fullmatch(val)
mc = re_range_count_float.fullmatch(val)
if m is not None:
start = float(m.group(1))
end = float(m.group(2))
step = float(m.group(3)) if m.group(3) is not None else 1
valslist_ext += np.arange(start, end + step, step).tolist()
elif mc is not None:
start = float(mc.group(1))
end = float(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == str_permutations:
valslist = list(permutations(valslist))
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.confirm:
opt.confirm(p, valslist)
return valslist
try:
x_opt = axis_options[x_type]
xs = process_axis(x_opt, x_values)
y_opt = axis_options[y_type]
ys = process_axis(y_opt, y_values)
z_opt = axis_options[z_type]
zs = process_axis(z_opt, z_values)
except ValueError:
state.interrupted = True
return None
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed','Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = len(xs) * sum(ys) * len(zs)
elif z_opt.label == 'Steps':
total_steps = len(xs) * len(ys) * sum(zs)
else:
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
total_steps *= 2
print('')
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * p.n_iter} images on a {len(xs)}x{len(ys)}x{len(zs)} grid. (Total steps to process: {total_steps * p.n_iter})")
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
if not opts.outdir_samples and not opts.outdir_txt2img_samples:
print(f"ERROR: X/Y/Z Plot script requires that the Output Samples directory setting be set.")
return None
base_outpath = opts.outdir_samples or opts.outdir_txt2img_samples
web_path = os.path.join(base_outpath, "xyz")
os.makedirs(web_path, exist_ok=True)
web_n = images.get_next_sequence_number(web_path, "")
web_path = os.path.join(web_path, f"{web_n:05}")
p.outpath_samples = os.path.join(web_path, "images")
def cell(x, y, z):
pc = copy(p)
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
return process_images(pc)
with SharedSettingsStackHelper():
processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
web_path=web_path
)
if processed is None or state.interrupted:
print('')
return None
# restore checkpoint in case it was changed by axes
modules.sd_models.reload_model_weights(shared.sd_model)
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
print('') # Fixes some console glitching
return processed