forked from QihanZhao/enlighten-anything
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
166 lines (127 loc) · 5.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
from loss import LossFunction
from fuse_block import TransformerBlock_1
class GatedResidualBlock(nn.Module):
def __init__(self, channels):
super(GatedResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.act = nn.Mish()
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
self.gate = nn.Sequential(
nn.Conv2d(channels, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.bn1(x)
x = self.act(x)
x = self.conv2(x)
x = self.bn2(x)
gate = self.gate(x)
x = gate * x + (1 - gate) * residual # Sigmoid门控的残差连接
return x
class EnhanceNetwork(nn.Module):
def __init__(self, layers, channels):
super(EnhanceNetwork, self).__init__()
kernel_size = 3
dilation = 1
padding = int((kernel_size - 1) / 2) * dilation
self.in_conv = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
nn.Mish()
)
self.fusion = TransformerBlock_1(channels, channels, channels, num_heads=3)
self.conv = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
nn.BatchNorm2d(channels),
nn.Mish()
)
self.blocks = nn.ModuleList()
for i in range(layers):
self.blocks.append(self.conv)
self.out_conv = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid()
)
self.block = GatedResidualBlock(channels)
def forward(self, input, sem, depth):
fea = self.in_conv(input)
fea = fea + self.fusion(fea, sem,depth)
for conv in self.blocks:
fea = fea + conv(fea)
fea = self.block(fea)
fea = self.out_conv(fea)
illu = fea + input
illu = torch.clamp(illu, 0.0001, 1)
return illu
class ColorCorrectionModule(nn.Module):
def __init__(self, correction_matrix=None, use_lut=False, lut_size=33):
super(ColorCorrectionModule, self).__init__()
# 如果提供了色彩校正矩阵,则直接使用
if correction_matrix is not None:
assert correction_matrix.shape == (3, 3), "Correction matrix should be a 3x3 matrix"
self.correction_matrix = nn.Parameter(torch.tensor(correction_matrix).float(), requires_grad=True)
self.use_lut = False
else:
self.correction_matrix = None
self.use_lut = use_lut
# 初始化查找表(如果use_lut为True)
if self.use_lut:
self.lut = nn.Parameter(torch.randn(lut_size, 3).float(), requires_grad=True)
def forward(self, input):
if self.correction_matrix is not None:
# 使用色彩校正矩阵的方式
corrected_input = input @ self.correction_matrix
elif self.use_lut:
# 使用查找表的方式
normalized_input = input / 255.0
indices = torch.floor(normalized_input * (self.lut.size(0) - 1)).long()
corrected_input = F.embedding(indices.unsqueeze(0).unsqueeze(0), self.lut).squeeze()
else:
# 若没有提供校正方式,默认输出原输入
corrected_input = input
return corrected_input
class Network_woCalibrate(nn.Module):
def __init__(self, use_lut=False):
super().__init__()
self.enhance = EnhanceNetwork(layers=2, channels=3)
self.color_correction = ColorCorrectionModule(use_lut=use_lut)
self._criterion = LossFunction()
def weights_init(self, m):
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1., 0.02)
def forward(self, input, sem,depth):
i = self.enhance(input, sem,depth)
r = input / i
r = torch.clamp(r, 0, 1)
# 应用颜色校正
corrected_r = self.color_correction(r)
return i, corrected_r, depth
def _loss(self, input, sem, depth):
i, r,d = self(input, sem,depth)
loss_semantic = self._criterion(input, i)
loss_depth =self._criterion(input, d)
loss=loss_semantic+loss_depth
return loss
# def count_parameters(model):
# return sum(p.numel() for p in model.parameters() if p.requires_grad)
# net = Network_woCalibrate()
# total_params = count_parameters(net)
# print(f"Total trainable parameters: {total_params}")
# import torch
# from thop import profile
# input_tensor = torch.randn(1, 3, 480, 600) # Replace height and width with your input size
# model = Network_woCalibrate()
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# # Move the model and input tensor to the same device (e.g., CPU or GPU)
# model.to(device)
# input_tensor = input_tensor.to(device)
# flops, params = profile(model, inputs=(input_tensor,input_tensor,input_tensor))
# print(f"FLOPs: {flops / 1e9} G FLOPs") # Convert FLOPs to Giga FLOPs