-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgan_chat.py
449 lines (340 loc) · 17.8 KB
/
gan_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import json
import os
import os
import openai
import json
import re
import sys
import math
from copy import deepcopy
import random
import numpy as np
import pdb
import time
from tqdm import tqdm
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
)
@retry(wait=wait_exponential(min=8, max=100), stop=stop_after_attempt(6))
def Promting(messages, temperature, number):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", messages=messages, temperature=temperature, n=number)
return response['choices']
@retry(wait=wait_exponential(min=8, max=100), stop=stop_after_attempt(6))
def Promting_Dis(messages):
prefix = messages[0]['content'] + '\n\n'
for i in messages[1:]:
if i['role'] == 'user':
prefix = prefix + i['content']
else:
prefix = prefix + i['content'] + '\n\n'
response = openai.Completion.create(
engine="text-davinci-002", prompt=prefix, temperature=0, max_tokens=374, top_p=1, logprobs=1)
return response['choices'][0]
def Construct_Message(task_instruction, instance):
messages = []
messages.append({"role":"system", "content":task_instruction})
messages.append({"role":"user", "content": instance})
return messages
def replace_definition(new_definition, generator_prompt_temp):
generator_prompt_temp[0]['content'] = new_definition
return generator_prompt_temp
def replace_example(new_example, generator_prompt_temp, example_index):
definition = [generator_prompt_temp[0]]
input = re.findall(r"Input\:\s(.*)\nOutput\:\s", new_example, flags=re.DOTALL)
output = re.findall(r"Output\:\s(.*)", new_example)
generator_prompt_temp[2*example_index + 1] = {"role":"user", "content":input[0]}
generator_prompt_temp[2*example_index + 2] = {"role":"assistant", "content":output[0]}
generator_prompt_new = definition
for i in generator_prompt_temp[1:]:
generator_prompt_new.append(i)
return generator_prompt_new
def replace_discriminator(new_example, discriminator_prompt_ori):
try:
new_input = new_example.split('\n')
temp = new_input[-1].split(':')
first = new_input[0] + '\n' + new_input[1] + '\n' + new_input[2] + '\n' + temp[0] + ': '
second = temp[1].strip(' ')
examples = discriminator_prompt_ori
discriminator_prompt_new = [examples[0]]
for example in examples[1:]:
if example['role'] == "user":
example = example['content'].splitlines(True)
str = ''
example[-4] = re.split(r'(\.\s|\?\s|\.|\?)', example[-4])
values = example[-4][::2][:-1]
delimiters = example[-4][1::2]
for i in range(len(values)-1):
str += values[i] + delimiters[i]
example[-4] = str + first.strip('\n')
str = ''
str = str.join(example[0:-3])
discriminator_prompt_new.append({"role":"user", "content":str})
elif example['role'] == "assistant":
discriminator_prompt_new.append({"role":"assistant", "content":second})
return discriminator_prompt_new
except:
return discriminator_prompt_ori[:]
def replace_definition_dis(definition, discriminator_prompt_ori):
examples = discriminator_prompt_ori
discriminator_prompt_new = [examples[0]]
for example in examples[1:]:
if example['role'] == 'user':
example = example['content'].splitlines(True)
str = ''
example[-4] = re.split(r'(\.\s|\?\s|\.|\?)', example[-4])
values = example[-4][::2][:-1]
delimiters = example[-4][1::2]
str = ' ' + values[-1] + delimiters[-1]
example[-4] = definition[0] + str.strip('\n') + '\n'
str = ''
str = str.join(example)
discriminator_prompt_new.append({"role":"user", "content":str})
elif example['role'] == 'assistant':
discriminator_prompt_new.append({"role":"assistant", "content":example['content']})
return discriminator_prompt_new
def generator_prompt(definition, positive):
task_instruction = definition[0]
examples = []
for instance in positive:
examples.append([instance['input'], instance["output"]])
messages = []
messages.append({"role":"system", "content":task_instruction})
for i in range(len(examples)):
messages.append({"role":"user", "content":examples[i][0]})
messages.append({"role":"assistant", "content":examples[i][1]})
return messages
def discriminator_prompt(definition, positive, negative):
task_instruction = "Judge the answer is correct ground truth or generated fake answer."
examples = []
for instance in positive:
input_instance = "Input: " + instance['input'] + '\nOutput: ' + instance["output"] + '\n' + definition[0] + ' Is above output correct ground truth?' + "\n(A) Yes, it is correct ground truth.\n(B) No, it is generated fake output.\nThe answer is: "
output_instance = "(A) Yes, it is correct ground truth."
examples.append([input_instance, output_instance])
messages = []
messages.append({"role":"system", "content":task_instruction})
for i in range(len(examples)):
messages.append({"role":"user", "content":examples[i][0]})
messages.append({"role":"assistant", "content":examples[i][1]})
return messages
def generator(generator_prompt, instance):
generator_prompt_temp = generator_prompt[:]
generator_prompt_temp.append({"role":"user", "content": instance})
prediction = Promting(generator_prompt_temp, 0, 1)
# print(prediction)
return prediction
def discriminator(discriminator_prompt, instance, prediction):
qu = instance.strip('\n')
example = discriminator_prompt[1]['content']
example = example.splitlines(True)
example[-1] = example[-1].split(':')[0] + ': '
str1 = ''
str1 = str1.join(example[-4:])
prefix = 'Input: ' + str(qu) + '\nOutput: ' + str(prediction) + '\n' + str1
discriminator_prompt_temp = discriminator_prompt[:]
discriminator_prompt_temp.append({"role":"user", "content": prefix})
output = Promting_Dis(discriminator_prompt_temp)['logprobs']
try:
index_A = output['tokens'].index('A')
log_probability = output['top_logprobs'][index_A]['A']
except:
try:
index_B = output['tokens'].index('B')
log_probability = output['top_logprobs'][index_B]['B']
log_probability = math.log(1 - math.exp(log_probability))
except:
log_probability = -10
return log_probability
def Loss(generator_prompt, discriminator_prompt, true_instances, train_instances):
score = 0
for instance in true_instances:
log_probability = discriminator(discriminator_prompt, instance["input"], instance["output"][-1])
score += log_probability
for instance in train_instances:
prediction = generator(generator_prompt, instance["input"])
log_probability = discriminator(discriminator_prompt, instance["input"], prediction)
score += math.log(1 - math.exp(log_probability))
return score
def Update_generator(generator_prompt_ori, discriminator_prompt, definition, true_instances, train_instances, loss_function, negative_data):
definition_dis = generator_prompt_ori[0]['content']
task_instruction = 'Diversify the task instruction to be clearer. Keep the task instruction as declarative.'
instance_task = '\n\nTask instruction: ' + definition_dis + '\n\nImproved task instruction: '
messages = Construct_Message(task_instruction, instance_task)
new_definition_set = Promting(messages, 0.4, 5)
loss_new_definition_set = []
generator_prompt_def_set = []
for new_definition in new_definition_set:
new_definition = new_definition['message']['content'].strip('\n').replace('\n', ' ')
print(new_definition)
print("-------------")
generator_prompt_def = replace_definition(new_definition, generator_prompt_ori[:])
generator_prompt_def_set.append(generator_prompt_def[:])
loss_current = Loss(generator_prompt_def[:], discriminator_prompt[:], true_instances, train_instances)
loss_new_definition_set.append(loss_current)
minimum_loss = min(loss_new_definition_set)
if minimum_loss < loss_function:
generator_prompt_ori = generator_prompt_def_set[loss_new_definition_set.index(minimum_loss)][:]
definition = [new_definition_set[loss_new_definition_set.index(minimum_loss)]['message']['content'].strip('\n').replace('\n', ' ').replace('\r', ' ')]
loss_function = minimum_loss
print((loss_new_definition_set.index(minimum_loss), minimum_loss, generator_prompt_ori))
else:
print("Fail Optimization")
examples = generator_prompt_ori[1:]
for j in range(int(len(examples)/2)):
# example = re.findall(r"(Input\:\s.*\nOutput\:\s.*)", examples[j], flags=re.DOTALL)
print("For example")
print(j+1)
input_instance = 'Input: ' + examples[2*j]['content'] + '\nOutput: ' + examples[2*j+1]['content']
task_instruction = definition[0] + ' Diversify the example to make it more representative. Keep the format as Input: and Output: .'
instance_task = '\n\nExample: ' + input_instance + '\n\nImproved example: '
messages = Construct_Message(task_instruction, instance_task)
new_example_set = Promting(messages, 0.4, 5)
loss_new_example_set = []
generator_prompt_ex_set = []
for new_example in new_example_set:
new_example = new_example['message']['content'].strip('\n').replace('\n\n', '\n')
print(new_example)
print("-------------")
pattern = r"Input: (.*?)\nOutput: (.*?)\n"
match = re.findall(pattern, new_example+'\n', re.DOTALL)
# pdb.set_trace()
new_example = "Input: " + match[0][0] + "\nOutput: " + match[0][1]
print(new_example)
print("=============")
generator_prompt_ex = replace_example(new_example, generator_prompt_ori[:], j)
loss_current = Loss(generator_prompt_ex[:], discriminator_prompt[:], true_instances, train_instances)
loss_new_example_set.append(loss_current)
generator_prompt_ex_set.append(generator_prompt_ex[:])
minimum_loss= min(loss_new_example_set)
if minimum_loss < loss_function:
generator_prompt_ori = generator_prompt_ex_set[loss_new_example_set.index(minimum_loss)][:]
loss_function = minimum_loss
print((loss_new_example_set.index(minimum_loss), minimum_loss, generator_prompt_ori))
else:
print("Fail Optimization")
return generator_prompt_ori, definition
def Update_discriminator(generator_prompt, discriminator_prompt_ori, definition, true_instances, train_instances, loss_function, negative_data):
discriminator_prompt_ori = replace_definition_dis(definition, discriminator_prompt_ori)
definition_dis = discriminator_prompt_ori[0]['content']
task_instruction = 'Diversify the task instruction to be clearer. Keep the task instruction as declarative.'
instance_task = '\n\nTask instruction: ' + definition_dis + '\n\nImproved task instruction: '
messages = Construct_Message(task_instruction, instance_task)
new_definition_set = Promting(messages, 0.4, number=5)
loss_new_definition_set = []
discriminator_prompt_def_set = []
for new_definition in new_definition_set:
new_definition = new_definition['message']['content']
print(new_definition)
print("-------------")
discriminator_prompt_def = replace_definition(new_definition, discriminator_prompt_ori[:])
loss_current = Loss(generator_prompt[:], discriminator_prompt_def[:], true_instances, train_instances)
discriminator_prompt_def_set.append(discriminator_prompt_def)
loss_new_definition_set.append(loss_current)
maximum_loss = max(loss_new_definition_set)
if maximum_loss > loss_function:
discriminator_prompt_ori = discriminator_prompt_def_set[loss_new_definition_set.index(maximum_loss)][:]
loss_function = maximum_loss
print((loss_new_definition_set.index(maximum_loss), maximum_loss, discriminator_prompt_ori))
else:
print("Fail Optimization")
print("===========================")
print("After Discriminator Instruction")
example = discriminator_prompt_ori[1]['content']
example = example.splitlines(True)
example[-4] = example[-4].split('. ')[-1]
str = ''
str = str.join(example[-4:])
str += discriminator_prompt_ori[2]['content']
task_instruction = 'Diversify the multiple-choice question and the answer to make it more representative. Keep the main content. Keep the format as multiple-choice question and the answer.'
instance_task = '\n\nMultiple-choice question and the answer: ' + str + '\n\nImproved multiple-choice question and the answer: '
messages = Construct_Message(task_instruction, instance_task)
new_example_set = Promting(messages, 0.4, 5)
loss_new_example_set = []
discriminator_prompt_ex_set = []
for new_example in new_example_set:
new_example = new_example['message']['content']
print(new_example)
print("-------------")
discriminator_prompt_new = replace_discriminator(new_example, discriminator_prompt_ori[:])
loss_current = Loss(generator_prompt[:], discriminator_prompt_new[:], true_instances, train_instances)
discriminator_prompt_ex_set.append(discriminator_prompt_new[:])
loss_new_example_set.append(loss_current)
maximum_loss = max(loss_new_example_set)
if maximum_loss > loss_function:
discriminator_prompt_ori = discriminator_prompt_ex_set[loss_new_example_set.index(maximum_loss)][:]
loss_function = maximum_loss
print((loss_new_example_set.index(maximum_loss), maximum_loss, discriminator_prompt_ori))
else:
print("Fail Optimization")
return discriminator_prompt_ori, loss_function
def OptimizePrompt(generator_prompt, discriminator_prompt, definition, true_instances_full, train_instances_full, negative_data):
num_shots = 3
num_sample = 5
generator_prompt_set = []
for i in range(num_shots):
true_instances = random.sample(true_instances_full, num_sample)
train_instances = random.sample(train_instances_full, num_sample)
print("Optimize Iteration")
print(i)
print(generator_prompt)
loss_function = Loss(generator_prompt[:], discriminator_prompt[:], true_instances, train_instances)
print("Before Optimize")
print(loss_function)
discriminator_prompt, loss_function = Update_discriminator(generator_prompt[:], discriminator_prompt[:], definition, true_instances, train_instances, loss_function, negative_data)
print("After Discriminator")
print(loss_function)
generator_prompt, definition = Update_generator(generator_prompt[:], discriminator_prompt[:], definition, true_instances, train_instances, loss_function, negative_data)
loss_function = Loss(generator_prompt[:], discriminator_prompt[:], true_instances, train_instances)
print("After Optimize")
print(loss_function)
print(generator_prompt)
generator_prompt_set.append(generator_prompt[:])
return generator_prompt_set
def Attempt(generator_prompt, instance):
prediction = generator(generator_prompt, instance)[0]['message']['content']
# print(prediction)
return prediction
def main(argv):
localtime = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
print(localtime)
openai.api_key = (argv[0])
tasks_dir = "/home/bizon/Desktop/Adv-ICL/tasks/"
num_true_instances = 90
num_train_instances = 90
# For translation tasks
# for track in ["xlingual"]:
# For other tasks
for track in ["default"]:
test_tasks = [l.strip() for l in open(f"/home/bizon/Desktop/Adv-ICL/splits/{track}/test_tasks.txt")]
for task in test_tasks[int(argv[1]):int(argv[2])]:
print(task)
file = os.path.join(tasks_dir, 'testset_'+ task + ".json")
# file = os.path.join(tasks_dir, task + ".json")
with open(file) as fin:
task_data = json.load(fin)
task_data["Definition"] = [task_data["Definition"][0].strip('\n')]
GENERATOR_PROMPT = generator_prompt(task_data["Definition"],task_data["Positive Examples"])
DISCRIMINATOR_PROMPT = discriminator_prompt(task_data["Definition"],task_data["Positive Examples"], task_data["Negative Examples"])
print(DISCRIMINATOR_PROMPT)
true_instances = random.sample(task_data["Instances"], num_true_instances)
train_instances = random.sample(task_data["Instances"], num_train_instances)
GENERATOR_PROMPT_set = OptimizePrompt(GENERATOR_PROMPT, DISCRIMINATOR_PROMPT, task_data["Definition"], true_instances, train_instances, task_data["Negative Examples"])
test_instances = task_data["Instances"]
GENERATOR_PROMPT = GENERATOR_PROMPT_set[-1]
print(GENERATOR_PROMPT)
# for ite in range(3):
name_file = "/home/bizon/Desktop/Adv-ICL/eval/output/" + "[gan-chat-deversify]_" + str(task) + "_" + localtime + ".jsonl"
print(name_file)
with open(name_file, "w") as fout:
print("in create predictions")
for instance in tqdm(test_instances):
prediction = Attempt(GENERATOR_PROMPT,instance["input"])
fout.write(json.dumps({
"id": instance["id"],
"prediction": prediction},
) + "\n")
fout.close()
if __name__ == "__main__":
main(sys.argv[1:])