-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathl1_model_fig_8.m
240 lines (214 loc) · 7.73 KB
/
l1_model_fig_8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
function l1_model_fig_8()
%wild type model
ein_link = 1;
iin_link = 1;
[t,x] = l1_model(ein_link,iin_link);
subplot(3,1,1);
imagesc(t,1:6,x(:,5:5:30)');
xlim([1400 1800]);
set(gca,'xticklabels',...
cellfun(@(x) num2str(str2num(x)-1400),get(gca,'Xticklabels'),...
'UniformOutput',false));
colorbar;caxis([-6 6]);
title('Model Wildtype (No Bias)');
%model without inhibition
ein_link = 1;
iin_link = 0;
[t,x] = l1_model(ein_link,iin_link);
subplot(3,1,2);
imagesc(t,1:6,x(:,5:5:30)');
xlim([1400 1800]);
set(gca,'xticklabels',...
cellfun(@(x) num2str(str2num(x)-1400),get(gca,'Xticklabels'),...
'UniformOutput',false));
colorbar;caxis([-6 6]);
title('Model DD Ablation (Ventral Bias)');
%model without extrasynaptic excitation
ein_link = 0;
iin_link = 1;
[t,x] = l1_model(ein_link,iin_link);
subplot(3,1,3);
imagesc(t,1:6,x(:,5:5:30)');
xlim([1400 1800]);
set(gca,'xticklabels',...
cellfun(@(x) num2str(str2num(x)-1400),get(gca,'Xticklabels'),...
'UniformOutput',false));
colorbar;caxis([-6 6]);
title('Model Extrasynaptic Input Ablation (Dorsal Bias)');
end
function [t,x] = l1_model(ein_link,iin_link)
t=0:0.001:1800; % time stamp
initial_x = [-30;0.3;-1;1;-1; ...
0;0;0;0;0; ...
0;0;0;0;0; ...
0;0;0;0;0; ...
0;0;0;0;0; ...
0;0;0;0;0; ...
];
[t,x]=ode45( @(t,x) model_eqns(t,x,ein_link,iin_link), t, initial_x );
end
%PNAS
function dxdt=model_eqns(t,x,ein_link,iin_link)
%membrane capacitance
Cm = 3;
%conductances
gl = 100; %leak
gca = 400; %calcium
gk = 500; %potassium
%g = 100;
%reversal potentials
El = -60; %leak
Eca = 60; %calcium
Ek = -70; %potassium
Eplus = -10; %excitatory
Estar = 33.5; %extrasynaptic
Eminus = -67; %inhibitory
vnn = -33.5; %synaptic conductivity parameter
vavb = -40; %avb input membrane voltge
%timescales
tau_n = 30;
tau_u = 85;
tau_b = 10;
%proprioceptive coupling
c = 5;
%segment 1
vd1 = x(1);
nd1 = x(2);
md1 = x(3);
mv1 = x(4);
kap1 = x(5);
d_vd_dt1 = (1/Cm)*( -gl*(vd1 - El) ...
- gca*minf(vd1)*(vd1 - Eca) ...
- gk*nd1*(vd1 - Ek) ...
- syncon(vavb,100,-40,30)*(vd1 - Eplus )...
); %dorsal MN
d_nd_dt1 = (1/tau_n)*(-nd1 + ninf(vd1));
%dorsal muscle
d_md_dt1 = (1/tau_u)*( -gl*(md1 - El ) - syncon(vd1,1000,-30,20)*(md1 - Eplus) );
%ventral muscle
d_mv_dt1 = (1/tau_u)*( -gl*(mv1 - El ) - iin_link*syncon(vd1,1000,vnn,20)*(mv1 - Eminus) ...
- ein_link*syncon(vavb,2000,-30,20)*(mv1 - Estar) );
%curvature
d_kap_dt1 = (1/tau_b)*( -kap1 + sigma_def(mus(md1)) - sigma_def(mus(mv1)) );
%segment 2
vd2 = x(6);
nd2 = x(7);
md2 = x(8);
mv2 = x(9);
kap2 = x(10);
d_vd_dt2 = (1/Cm)*( -gl*(vd2 - El) ...
- gca*minf(vd2)*(vd2 - Eca) ...
- gk*nd2*(vd2 - Ek) ...
- syncon(vavb,100,-40,30)*(vd2 - Eplus )...
+ c*kap1 ); %dorsal MN
d_nd_dt2 = (1/tau_n)*(-nd2 + ninf(vd2));
d_md_dt2 = (1/tau_u)*( -gl*(md2 - El ) - syncon(vd2,1000,-30,20)*(md2 - Eplus) ); %dorsal muscle
d_mv_dt2 = (1/tau_u)*( -gl*(mv2 - El ) - iin_link*syncon(vd2,1000,vnn,20)*(mv2 - Eminus) ...
- ein_link*syncon(vavb,1000,-30,20)*(mv2 - Estar) ); %ventral muscle
d_kap_dt2 = (1/tau_b)*( -kap2 + sigma_def(mus(md2)) - sigma_def(mus(mv2)) ); %curvature
%segment 3
vd3 = x(11);
nd3 = x(12);
md3 = x(13);
mv3 = x(14);
kap3 = x(15);
d_vd_dt3 = (1/Cm)*( -gl*(vd3 - El) ...
- gca*minf(vd3)*(vd3 - Eca) ...
- gk*nd3*(vd3 - Ek) ...
- syncon(vavb,100,-40,30)*(vd3 - Eplus )...
+ c*kap2 ); %dorsal MN
d_nd_dt3 = (1/tau_n)*(-nd3 + ninf(vd3));
d_md_dt3 = (1/tau_u)*( -gl*(md3 - El ) - syncon(vd3,1000,-30,20)*(md3 - Eplus) ); %dorsal muscle
d_mv_dt3 = (1/tau_u)*( -gl*(mv3 - El ) - iin_link*syncon(vd3,1000,vnn,20)*(mv3 - Eminus) ...
- ein_link*syncon(vavb,1000,-30,20)*(mv3 - Estar) ); %ventral muscle
d_kap_dt3 = (1/tau_b)*( -kap3 + sigma_def(mus(md3)) - sigma_def(mus(mv3)) ); %curvature
%segment 4
vd4 = x(16);
nd4 = x(17);
md4 = x(18);
mv4 = x(19);
kap4 = x(20);
d_vd_dt4 = (1/Cm)*( -gl*(vd4 - El) ...
- gca*minf(vd4)*(vd4 - Eca) ...
- gk*nd4*(vd4 - Ek) ...
- syncon(vavb,100,-40,30)*(vd4 - Eplus )...
+ c*kap3 ); %dorsal MN
d_nd_dt4 = (1/tau_n)*(-nd4 + ninf(vd4));
d_md_dt4 = (1/tau_u)*( -gl*(md4 - El ) - syncon(vd4,1000,-30,20)*(md4 - Eplus) ); %dorsal muscle
d_mv_dt4 = (1/tau_u)*( -gl*(mv4 - El ) - iin_link*syncon(vd4,1000,vnn,20)*(mv4 - Eminus) ...
- ein_link*syncon(vavb,1000,-30,20)*(mv4 - Estar) ); %ventral muscle
d_kap_dt4 = (1/tau_b)*( -kap4 + sigma_def(mus(md4)) - sigma_def(mus(mv4))); %curvature
%segmeng 5
vd5 = x(21);
nd5 = x(22);
md5 = x(23);
mv5 = x(24);
kap5 = x(25);
d_vd_dt5 = (1/Cm)*( -gl*(vd5 - El) ...
- gca*minf(vd5)*(vd5 - Eca) ...
- gk*nd5*(vd5 - Ek) ...
- syncon(vavb,100,-40,30)*(vd5 - Eplus )...
+ c*kap4 ); %dorsal MN
d_nd_dt5 = (1/tau_n)*(-nd5 + ninf(vd5));
d_md_dt5 = (1/tau_u)*( -gl*(md5 - El ) - syncon(vd5,1000,-30,20)*(md5 - Eplus) ); %dorsal muscle
d_mv_dt5 = (1/tau_u)*( -gl*(mv5 - El ) - iin_link*syncon(vd5,1000,vnn,20)*(mv5 - Eminus) ...
- ein_link*syncon(vavb,1000,-30,20)*(mv5 - Estar) ); %ventral muscle
d_kap_dt5 = (1/tau_b)*( -kap5 + sigma_def(mus(md5)) - sigma_def(mus(mv5)) ); %curvature
%segment 6
vd6 = x(26);
nd6 = x(27);
md6 = x(28);
mv6 = x(29);
kap6 = x(30);
d_vd_dt6 = (1/Cm)*( -gl*(vd6 - El) ...
- gca*minf(vd6)*(vd6 - Eca) ...
- gk*nd6*(vd6 - Ek) ...
- syncon(vavb,100,-40,30)*(vd6 - Eplus )...
+ c*kap5 ); %dorsal MN
d_nd_dt6 = (1/tau_n)*(-nd6 + ninf(vd6));
d_md_dt6 = (1/tau_u)*( -gl*(md6 - El ) - syncon(vd6,1000,-30,20)*(md6 - Eplus) ); %dorsal muscle
d_mv_dt6 = (1/tau_u)*( -gl*(mv6 - El ) - iin_link*syncon(vd6,1000,vnn,20)*(mv6 - Eminus) ...
- ein_link*syncon(vavb,1000,-30,20)*(mv6 - Estar) ); %ventral muscle
d_kap_dt6 = (1/tau_b)*( -kap6 + sigma_def(mus(md6)) - sigma_def(mus(mv6)) ); %curvature
dxdt=[d_vd_dt1; d_nd_dt1; d_md_dt1; d_mv_dt1;d_kap_dt1;...
d_vd_dt2; d_nd_dt2; d_md_dt2; d_mv_dt2;d_kap_dt2;...
d_vd_dt3; d_nd_dt3; d_md_dt3; d_mv_dt3;d_kap_dt3;...
d_vd_dt4; d_nd_dt4; d_md_dt4; d_mv_dt4;d_kap_dt4;...
d_vd_dt5; d_nd_dt5; d_md_dt5; d_mv_dt5;d_kap_dt5;...
d_vd_dt6; d_nd_dt6; d_md_dt6; d_mv_dt6;d_kap_dt6
];
end
%activation functions
function sig = sigma_def(x)
cs = 0.01;
a0 = 0;
sig = (tanh(cs*(x-a0))+1)*1000;
end
function mi = minf(v)
theta_m = 10.25;
vm = -29;
mi = 1./(1 + exp((vm-v)/(theta_m)));
end
function ni = ninf(v)
theta_n = 20;
vn = -55;
ni = 1./(1 + exp((vn-v)/(theta_n)));
end
function ni = syncon(v,gbar,vn,theta_n)
K=4.3944;
ni = gbar./(1 + exp(K*((vn-v)/(theta_n))));
end
function mu = mus(v)
theta_mus = 10;
vmus = -45;
mu = 1./(1 + exp((vmus-v)/(theta_mus)));
end