-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
79 lines (67 loc) · 2.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import sys
import hydra
import warnings
import torch
import pytorch_lightning as pl
from omegaconf import OmegaConf
from pytorch_lightning.loggers import WandbLogger
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(ROOT_DIR)
from data_utils.CMapDataset import create_dataloader
from model.network import create_network
from model.module import TrainingModule
@hydra.main(version_base="1.2", config_path="configs", config_name="train")
def main(cfg):
print("******************************** [Config] ********************************")
print(OmegaConf.to_yaml(cfg))
print("******************************** [Config] ********************************")
pl.seed_everything(cfg.seed)
last_run_id = None
last_epoch = 0
last_ckpt_file = None
if cfg.load_from_checkpoint:
wandb_dir = f'output/{cfg.name}/log/{cfg.wandb.project}'
last_run_id = os.listdir(wandb_dir)[0]
ckpt_dir = f'{wandb_dir}/{last_run_id}/checkpoints'
ckpt_files = os.listdir(ckpt_dir)
for ckpt_file in ckpt_files:
epoch = int(ckpt_file.split('-')[0].split('=')[1])
if epoch > last_epoch:
last_epoch = epoch
last_ckpt_file = os.path.join(ckpt_dir, ckpt_file)
print("***************************************************")
print(f"Loading checkpoint from run_id({last_run_id}): epoch {last_epoch}")
print("***************************************************")
logger = WandbLogger(
name=cfg.name,
save_dir=cfg.wandb.save_dir,
id=last_run_id,
project=cfg.wandb.project
)
trainer = pl.Trainer(
logger=logger,
accelerator='gpu',
strategy='ddp_find_unused_parameters_true' if (cfg.model.pretrain is not None) else 'auto',
devices=cfg.gpu,
log_every_n_steps=cfg.log_every_n_steps,
max_epochs=cfg.training.max_epochs,
gradient_clip_val=0.1
)
dataloader = create_dataloader(cfg.dataset, is_train=True)
network = create_network(cfg.model, mode='train')
model = TrainingModule(
cfg=cfg.training,
network=network,
epoch_idx=last_epoch
)
model.train()
trainer.fit(model, dataloader, ckpt_path=last_ckpt_file)
torch.save(model.network.state_dict(), f'{cfg.training.save_dir}/epoch_{cfg.training.max_epochs}.pth')
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
torch.autograd.set_detect_anomaly(True)
torch.cuda.empty_cache()
torch.multiprocessing.set_sharing_strategy("file_system")
warnings.simplefilter(action='ignore', category=FutureWarning)
main()