-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathft_clip_text.py
249 lines (204 loc) · 7.61 KB
/
ft_clip_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import os
import itertools
import torch
import torch.nn as nn
import random
import numpy as np
import clip
from tqdm import tqdm
from dataset.celebahq import CelebAHQ
from dataset.cub import CUBZeroShotText
from torchvision import transforms
class Trainer:
def __init__(self, args):
self.args = args
self.device = torch.device(0)
self.clip_model = clip.load(args.clip_visual_backbone, device="cpu")[
0
].to(self.device)
self.ce_criterion = nn.CrossEntropyLoss()
self.config_dataloaders()
self.config_optimizers()
self.max_logit_scale = np.log(100)
def config_dataloaders(self):
clip_input_resolution = self.clip_model.visual.input_resolution
normalize = transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
inplace=True,
)
def convert_to_rgb(image):
return image.convert("RGB")
train_transform = transforms.Compose(
[
transforms.RandomResizedCrop(
clip_input_resolution,
scale=(0.9, 1.0),
interpolation=transforms.functional.InterpolationMode.BICUBIC,
),
convert_to_rgb,
transforms.ToTensor(),
normalize,
]
)
if self.args.dataset == "celebahq":
train_set = CelebAHQ(
"data",
split=self.args.train_split,
transform=train_transform,
not_return_word_embed=True,
)
elif self.args.dataset == "cub":
train_set = CUBZeroShotText(
"data",
split=self.args.train_split,
transform=train_transform,
not_return_word_embed=True,
)
else:
raise NotImplementedError
self.train_loader = torch.utils.data.DataLoader(
train_set,
self.args.batch,
shuffle=True,
num_workers=self.args.num_workers,
pin_memory=self.args.pin_memory,
drop_last=True,
persistent_workers=self.args.num_workers > 0,
)
def config_optimizers(self):
for p in self.clip_model.parameters():
p.requires_grad = False
ft_parameters = []
if self.args.clip_visual_backbone.startswith("RN"):
ft_parameters.append(self.clip_model.visual.layer4.parameters())
ft_parameters.append(self.clip_model.visual.attnpool.parameters())
elif self.args.clip_visual_backbone.startswith("ViT"):
ft_parameters.append(
self.clip_model.visual.transformer.resblocks[
-self.args.vit_ft_layers :
].parameters()
)
ft_parameters.append(self.clip_model.visual.ln_post.parameters())
ft_parameters.append([self.clip_model.visual.proj])
else:
raise NotImplementedError
ft_parameters.append(
self.clip_model.transformer.resblocks[-1].parameters()
)
ft_parameters.append(self.clip_model.ln_final.parameters())
ft_parameters.append([self.clip_model.text_projection])
ft_parameters.append([self.clip_model.logit_scale])
chained_ft_parameters = itertools.chain(*ft_parameters)
for p in chained_ft_parameters:
p.requires_grad = True
self.optimizer = torch.optim.AdamW(
itertools.chain(*ft_parameters), lr=self.args.lr
)
def train(self, epoch):
total_loss = 0
total_sent_img_loss = 0
self.clip_model.train()
pbar = tqdm(
enumerate(self.train_loader),
dynamic_ncols=True,
total=len(self.train_loader),
)
for i, data_dict in pbar:
loss = 0
self.optimizer.zero_grad()
img = data_dict["image"]
clip_tokens = data_dict["clip_tokens"]
img = img.to(self.device, non_blocking=True)
clip_tokens = clip_tokens.to(self.device, non_blocking=True)
logits_per_image, logits_per_text = self.clip_model(
img, clip_tokens
)
gt = torch.arange(len(logits_per_image), device=self.device).long()
sent_img_loss = (
self.ce_criterion(logits_per_image, gt)
+ self.ce_criterion(logits_per_text, gt)
) / 2
loss += sent_img_loss
total_sent_img_loss += sent_img_loss.item()
loss.backward()
self.optimizer.step()
self.clip_model.logit_scale.data.clamp_(0, self.max_logit_scale)
total_loss += loss.item()
avg_loss = total_loss / (i + 1)
desc = f"[{epoch}/{self.args.epoch}] loss: {avg_loss:.3f}"
pbar.set_description(desc)
avg_loss = total_loss / len(self.train_loader)
avg_sent_img_loss = total_sent_img_loss / len(self.train_loader)
log_dict = {"loss": avg_loss, "sent_img_loss": avg_sent_img_loss}
return log_dict
def save(self, epoch):
state_dict = {
"model": self.clip_model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"epoch": epoch,
}
fpath = os.path.join(self.args.ckpt_dir, "ckpt.pth")
torch.save(state_dict, fpath)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset", type=str, required=True, choices=["cub", "celebahq"]
)
parser.add_argument("--batch", type=int, default=2)
parser.add_argument("--epoch", type=int, default=32)
parser.add_argument("--lr", type=float, default=5e-4)
parser.add_argument("--beta1", type=float, default=0.9)
parser.add_argument("--beta2", type=float, default=0.98)
parser.add_argument("--eps", type=float, default=1e-6)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--exp_root", type=str, default="exp/ft_clip_text")
parser.add_argument(
"--train_split",
type=str,
default="train",
choices=["train", "trainval", "all"],
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--clip_visual_backbone",
type=str,
default="ViT-B/32",
choices=list(clip.clip._MODELS.keys()),
)
parser.add_argument("--vit_ft_layers", type=int, default=1)
parser.add_argument("--name", type=str)
parser.add_argument("--pin_memory", action="store_true")
parser.add_argument("--ckpt", type=str)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
assert args.vit_ft_layers >= 1
if args.name is None:
args.name = ""
else:
args.name = f"{args.name}_"
args.name = f"ft_clip_{args.name}"
if args.clip_visual_backbone.startswith("ViT"):
clip_visual_backbone_name = args.clip_visual_backbone.replace("/", "_")
elif args.clip_visual_backbone.startswith("RN"):
clip_visual_backbone_name = args.clip_visual_backbone
else:
raise NotImplementedError
args.name += (
f"{clip_visual_backbone_name}_{args.dataset}_{args.train_split}"
)
args.ckpt_dir = os.path.join(args.exp_root, args.name)
if not os.path.exists(args.ckpt_dir):
os.makedirs(args.ckpt_dir)
return args
def main():
args = parse_args()
trainer = Trainer(args)
for e in range(args.epoch):
trainer.train(e)
trainer.save(e)
if __name__ == "__main__":
main()