-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
391 lines (327 loc) · 12.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import torch
import clip
import argparse
import torch.nn.functional as F
import random
import numpy as np
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from utils import differentiable_clip_preprocess_from_stylegan
from model.stylegan2.model import Generator
from dataset.celebahq import CelebAHQ
from dataset.cub import CUBZeroShotText
from torchvision import transforms
from dataset.data_utils import pad_text_seq_collate
from model.data_utils import sample_data
from model.text_encoder_cond import Sentence2DeltaLatent
class Trainer:
def __init__(self, args):
self.args = args
self.device = torch.device(0)
# model
self.generator = Generator(args.stylegan_size, 512, 8)
stylegan_ckpt = torch.load(args.ckpt)
g_ckpt = stylegan_ckpt["g_ema"]
self.generator.load_state_dict(g_ckpt, strict="ffhq" not in args.ckpt)
self.generator.eval()
self.generator = self.generator.to(self.device)
for p in self.generator.parameters():
p.requires_grad = False
self.synthesis_kwargs = dict(input_is_latent=True, randomize_noise=False)
if args.truncation < 1:
self.mean_latent = self.generator.mean_latent(4096)
else:
self.mean_latent = None
self.clip_model_for_train = clip.load("ViT-B/32", device="cpu")[0]
self.clip_model_for_train = self.clip_model_for_train.to(self.device)
if args.ckpt_clip_for_train is not None:
assert os.path.exists(args.ckpt_clip_for_train)
ckpt = torch.load(args.ckpt_clip_for_train)
self.clip_model_for_train.load_state_dict(ckpt["model"])
for p in self.clip_model_for_train.parameters():
p.requires_grad = False
self.clip_model_for_train.eval()
self.clip_visual_size = self.clip_model_for_train.visual.input_resolution
if args.latent_space == "w":
output_dim = args.latent
elif args.latent_space == "wp":
output_dim = args.latent * self.generator.n_latent
else:
raise NotImplementedError
self.sentence2latent = Sentence2DeltaLatent(
args.word_embed_size,
g_latent_dim=args.latent,
out_dim=output_dim,
hidden_dim=args.latent,
num_mlp_layers=args.text_encoder_num_mlp_layers,
return_delta=True,
).to(self.device)
self.sentence2latent_optimizer = optim.Adam(
self.sentence2latent.parameters(), args.lr
)
self.optimizer_lst = [self.sentence2latent_optimizer]
self.model_lst = [self.sentence2latent]
if args.resume is not None:
print(f"resume training from {args.resume}")
ckpt = torch.load(args.resume)
self.start_iter_idx = int(
os.path.splitext(os.path.basename(args.resume))[0]
)
self.sentence2latent.load_state_dict(ckpt["sentence_encoder"])
self.sentence2latent_optimizer.load_state_dict(
ckpt["sentence_encoder_optimizer"]
)
else:
self.start_iter_idx = 0
self.ce_criterion = nn.CrossEntropyLoss()
# dataset
if args.dataset in ["celebahq", "ffhq"]:
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.Resize(args.stylegan_size),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
),
]
)
train_set = CelebAHQ(
"data",
split="train",
transform=transform,
)
elif args.dataset in ["cub", "nabirds"]:
imsize = args.stylegan_size
transform = transforms.Compose(
[
transforms.Resize(int(imsize * 76 / 64)),
transforms.RandomCrop(imsize),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
),
]
)
train_set = CUBZeroShotText(
"data",
split="train",
transform=transform,
)
else:
raise NotImplementedError
collate_fn = pad_text_seq_collate
self.dataloader = torch.utils.data.DataLoader(
train_set,
args.batch,
shuffle=True,
num_workers=args.num_workers,
pin_memory=False,
drop_last=True,
collate_fn=collate_fn,
persistent_workers=args.num_workers > 0,
)
self.loader = sample_data(self.dataloader)
# for visualization
if args.dataset in ["celebahq", "ffhq"]:
transform = transforms.Compose(
[
transforms.Resize(args.stylegan_size),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
),
]
)
elif args.dataset in ["cub", "nabirds"]:
imsize = args.stylegan_size
transform = transforms.Compose(
[
transforms.Resize(int(imsize * 76 / 64)),
transforms.CenterCrop(imsize),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True
),
]
)
else:
raise NotImplementedError
self.ckpt_dir = os.path.join(args.exp_dir, "ckpt")
if not os.path.exists(self.ckpt_dir):
os.mkdir(self.ckpt_dir)
def zero_grad_all(self):
for o in self.optimizer_lst:
o.zero_grad()
def false_requires_grad_all(self):
for m in self.model_lst:
for p in m.parameters():
p.requires_grad = False
def true_requires_grad(self, model_lst):
for m in model_lst:
for p in m.parameters():
p.requires_grad = True
@torch.no_grad()
def get_latent(self, noise):
return self.generator(
[noise],
just_latent=True,
truncation=self.args.truncation,
truncation_latent=self.mean_latent,
)[0]
def forward_sentence2latent(
self,
text_embed,
text_len=None,
return_delta=False,
noise=None,
return_rand_latent=False,
):
if noise is None:
gaussian_noise = torch.randn(
text_embed.shape[0], self.args.latent, device=self.device
)
else:
gaussian_noise = noise
rand_latent = self.get_latent(gaussian_noise)
latent_code, delta = self.sentence2latent(rand_latent, text_embed, text_len)
output_lst = [latent_code]
if return_delta:
output_lst.append(delta)
if return_rand_latent:
output_lst.append(rand_latent)
if len(output_lst) == 1:
return output_lst[0]
else:
return tuple(output_lst)
def g_nonsaturating_loss(self, fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def d_logistic_loss(self, real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def train(self):
log_dict = {}
self.zero_grad_all()
self.false_requires_grad_all()
self.sentence2latent.train()
self.true_requires_grad([self.sentence2latent])
loader_out = next(self.loader)
real_img = loader_out["image"]
clip_tokens = loader_out["clip_tokens"]
text_embed = loader_out["word_embeds"]
text_len = loader_out["text_len"]
real_img = real_img.to(self.device, non_blocking=True)
text_embed = text_embed.to(self.device, non_blocking=True)
clip_tokens = clip_tokens.to(self.device, non_blocking=True)
loss = 0
latent_code, sentence_delta, rand_latent = self.forward_sentence2latent(
text_embed, text_len, return_delta=True, return_rand_latent=True
)
fake_img = self.generator([latent_code], **self.synthesis_kwargs)[0]
fake_img_for_clip = differentiable_clip_preprocess_from_stylegan(
fake_img, self.clip_visual_size
)
with torch.no_grad():
clip_text_feat = self.clip_model_for_train.encode_text(clip_tokens)
clip_text_feat = F.normalize(clip_text_feat, dim=-1)
fake_img_feat = self.clip_model_for_train.encode_image(fake_img_for_clip)
fake_img_feat = F.normalize(fake_img_feat, dim=-1)
logits_per_image_to_text = (
self.clip_model_for_train.logit_scale
* fake_img_feat
@ clip_text_feat.t()
)
ground_truth = torch.arange(
len(logits_per_image_to_text), device=self.device
).long()
img_text_loss = self.ce_criterion(
logits_per_image_to_text, ground_truth
)
loss += img_text_loss
log_dict["clip_fake_img_text_contrastive_loss"] = img_text_loss.item()
direction_norm = torch.norm(sentence_delta, dim=-1)
threholded_norm = F.relu(
direction_norm - self.args.direction_norm_penalty_threshold
)
threholded_norm = threholded_norm.mean()
threholded_norm = threholded_norm * self.args.lambda_direction_norm_penalty
log_dict["direction_norm_loss"] = threholded_norm.item()
loss += threholded_norm
loss.backward()
self.sentence2latent_optimizer.step()
log_dict["loss"] = loss.item()
return log_dict
def save_checkpoint(self, iteration_idx):
state_dict = {
"sentence_encoder": self.sentence2latent.state_dict(),
"sentence_encoder_optimizer": self.sentence2latent_optimizer.state_dict(),
}
torch.save(state_dict, f"{self.ckpt_dir}/last.pt")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--name", type=str)
parser.add_argument(
"--dataset",
type=str,
choices=["celebahq", "cub", "nabirds", "ffhq"],
required=True,
)
parser.add_argument("--iter", type=int, default=60001)
parser.add_argument(
"--stylegan_size", type=int, default=256, help="image sizes for the model"
)
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--batch", type=int, default=2)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--exp_root", type=str, default="exp/stylet2i")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--text_encoder_num_mlp_layers", type=int, default=3)
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument("--resume", type=str)
parser.add_argument("--ckpt_clip_for_train", type=str)
parser.add_argument("--truncation", type=float, default=0.5)
parser.add_argument("--latent_space", type=str, default="wp", choices=["wp", "w"])
parser.add_argument("--lambda_direction_norm_penalty", type=float, default=1.0)
parser.add_argument("--direction_norm_penalty_threshold", type=float, default=10.0)
args = parser.parse_args()
args.latent = 512
args.word_embed_size = 300
if args.resume is not None:
assert os.path.exists(args.resume)
return args
def seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def main():
args = parse_args()
seed_all(args.seed)
name = f"stylet2i_{args.dataset}"
if args.name is not None:
name += f"_{args.name}"
if not os.path.exists(args.exp_root):
os.mkdir(args.exp_root)
args.exp_dir = os.path.join(args.exp_root, name)
if not os.path.exists(args.exp_dir):
os.mkdir(args.exp_dir)
trainer = Trainer(args)
pbar = tqdm(range(trainer.start_iter_idx, args.iter), dynamic_ncols=True)
for i in pbar:
log_dict = {}
if i % len(trainer.dataloader) == 0:
log_dict["epoch"] = i // len(trainer.dataloader)
if i % 5000 == 0:
trainer.save_checkpoint(i)
train_log_dict = trainer.train()
log_dict.update(train_log_dict)
desc = ""
for k, v in log_dict.items():
desc += f"{k}: {v:.4f} "
pbar.set_description(desc)
if __name__ == "__main__":
main()