-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCF.F90
executable file
·304 lines (270 loc) · 7.86 KB
/
SCF.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
PROGRAM MAIN
! FORTRAN 90 code for Hatree-Fock method
! Framework written by Xinzijian Liu
! Gaussian integration written by Ning Zhang
! DIIS written by Yuhang Yao
USE gauss_integration_s
IMPLICIT NONE
INTEGER, PARAMETER :: double = 8
REAL(KIND=double) :: autoang = 0.52917720859d0
INTEGER, ALLOCATABLE :: nutyp(:), nbas(:)
REAL(KIND=double), ALLOCATABLE :: cent(:,:), alp(:)
REAL(KIND=double), ALLOCATABLE :: S(:,:), T(:,:)
REAL(KIND=double), ALLOCATABLE :: V1e(:,:), F1e(:,:)
REAL(KIND=double), ALLOCATABLE :: V2e(:,:,:,:), F2e(:,:,:), Fnow(:,:) ! modified by DIIS to save F of each step
REAL(KIND=double), ALLOCATABLE :: E(:), C(:,:)
REAL(KIND=double), ALLOCATABLE :: cor(:,:)
REAL(KIND=double), ALLOCATABLE :: Dnow(:,:), Dold(:,:)
REAL(KIND=double), ALLOCATABLE :: X(:,:), work(:)
REAL(KIND=double), ALLOCATABLE :: orth(:,:), eigval(:)
REAL(KIND=double), ALLOCATABLE :: ErrF(:,:,:) ! DIIS ErrF
REAL(KIND=double) :: Enow, Eold, eps1, eps2, Te, Vne, Vee, Vnn
INTEGER :: i, j, k, l, kmax, ierr
INTEGER :: natom, charge, mult, nbastot, nele, nocc
LOGICAL :: fexist, fdiis
!STO-3G
REAL(KIND=double) :: a1s(3), d1s(3), a2sp(3), d2s(3), d2p(3)
REAL(KIND=double) :: z1s(10), z2sp(10)
NAMELIST/ctr/ natom, charge, mult, kmax, eps1, eps2, fdiis
CALL INIT
! Calculate integrals
CALL init_param
DO i = 1, nbastot
DO j = 1, i
S(i,j) = overlap_s(alp(i),cent(:,i),alp(j),cent(:,j))
S(j,i) = S(i,j)
T(i,j) = kinetic_s(alp(i),cent(:,i),alp(j),cent(:,j))
T(j,i) = T(i,j)
V1e(i,j) = 0d0
DO k = 1, natom
V1e(i,j) = V1e(i,j) - nutyp(k) * e_attract_s(alp(i),cent(:,i),alp(j),cent(:,j),cor(:,k))
END DO
V1e(j,i) = V1e(i,j)
END DO
END DO
DO i = 1, nbastot
DO j = 1, i
DO k = 1, i
DO l = 1, k
V2e(i,j,k,l) = e_repulsion_s(alp(i),cent(:,i),alp(j),cent(:,j),alp(k),cent(:,k),alp(l),cent(:,l))
V2e(j,i,k,l) = V2e(i,j,k,l)
V2e(i,j,l,k) = V2e(i,j,k,l)
V2e(j,i,l,k) = V2e(i,j,k,l)
V2e(k,l,i,j) = V2e(i,j,k,l)
V2e(l,k,i,j) = V2e(i,j,k,l)
V2e(k,l,j,i) = V2e(i,j,k,l)
V2e(l,k,j,i) = V2e(i,j,k,l)
END DO
END DO
END DO
END DO
F1e = T + V1e
! Calculate transformation matrix X = S^(-1/2)
orth = S
CALL dsyev('V','L',nbastot,orth,nbastot,eigval,work,nbastot*10,ierr)
DO i = 1, nbastot
IF(eigval(i) .eq. 0d0) THEN
WRITE(*,*) 'No.', i, 'eigenvalue of S is 0.'
STOP
END IF
X(:,i) = orth(:,i) * 1d0/sqrt(eigval(i))
END DO
X = matmul(X,transpose(orth))
k = 1
DO WHILE(.TRUE.)
DO i = 1, nbastot
DO j = 1, nbastot
F2e(i,j,k) = F1e(i,j) + sum(Dnow(:,:)*(V2e(i,j,:,:)*2-V2e(i,:,j,:))) ! modified by DIIS to save F of each step
END DO
END DO
Fnow = F2e(:,:,k)
IF(fdiis) THEN
ErrF(:,:,k) = MATMUL(MATMUL(F2e(:,:,k),Dnow),S) - MATMUL(MATMUL(S,Dnow),F2e(:,:,k)) ! calculate the ErrF of No. k step for DIIS
CALL DIIS(F2e,Fnow)
END IF
CALL EIGEN(Fnow,E,C,Dnow,Enow)
IF(sum((Dnow-Dold)**2) <= eps1) THEN
WRITE(*,*) 'Density converges.'
EXIT
ELSE IF(abs(Enow-Eold) <= eps2) THEN
WRITE(*,*) 'Energy converges.'
EXIT
ELSE IF (k > kmax) THEN
WRITE(*,*) 'Iteration exceeds max number.'
EXIT
END IF
Dold = Dnow
Eold = Enow
k = k + 1
END DO
WRITE(*,*) 'HF Energy:', Enow
Te = trace(matmul(Dnow,T))*2
Vne = trace(matmul(Dnow,V1e))*2
Vee = Enow - Te - Vne
Vnn = 0d0
DO i = 1, natom
DO j = 1, i - 1
Vnn = Vnn + nutyp(i)*nutyp(j)/sqrt(sum((cor(:,i)-cor(:,j))**2))
END DO
END DO
WRITE(*,*) 'Te:', Te
WRITE(*,*) 'Vne:', Vne
WRITE(*,*) 'Vee:', Vee
WRITE(*,*) 'Vnn:', Vnn
WRITE(*,*) 'Etot:', Enow + Vnn
WRITE(*,*) 'Job finishes.'
DEALLOCATE(S,T,V1e,V2e,F1e,F2e,E,C,Dnow,Dold,ErrF)
CONTAINS
SUBROUTINE INIT
IMPLICIT NONE
! Read input
INQUIRE(FILE='ctrfile.dat',EXIST=fexist)
IF(fexist /= .TRUE.) THEN
WRITE(*,*) "Error : ctrfile not found."
STOP
ENDIF
OPEN(10,FILE='ctrfile.dat')
READ(10,ctr)
CLOSE(10)
ALLOCATE(nutyp(natom))
ALLOCATE(cor(3,natom))
ALLOCATE(nbas(natom))
! Read configuration
INQUIRE(FILE='config.dat',EXIST=fexist)
IF(fexist /= .TRUE.) THEN
WRITE(*,*) "Error : config not found."
STOP
ENDIF
OPEN(10,FILE='config.dat')
DO i = 1, natom
READ(10,*) nutyp(i)
READ(10,*) cor(1:3,i)
END DO
CLOSE(10)
cor = cor / autoang
nele = sum(nutyp) - charge
IF(nele < 0) THEN
WRITE(*,*) 'Wrong electron number.'
STOP
END IF
IF((mod(nele,2) .eq. mod(mult,2)) .or. mult <= 0&
&.or. mult >= nele + 1) THEN
WRITE(*,*) 'Wrong spin multiplicity.'
STOP
END IF
nocc = (nele - (mult - 1)) / 2 + mult - 1
DO i = 1, natom
IF(nutyp(i)>=1 .and. nutyp(i)<=2) THEN
nbas(i) = 3
ELSE IF(nutyp(i)>=3 .and. nutyp(i) <=10) THEN
nbas(i) = 6
ELSE
WRITE(*,*) 'Wrong nuclear type.'
STOP
END IF
END DO
nbastot = sum(nbas)
ALLOCATE(cent(3,nbastot), alp(nbastot))
ALLOCATE(S(nbastot,nbastot), T(nbastot,nbastot))
ALLOCATE(V1e(nbastot,nbastot), V2e(nbastot,nbastot,nbastot,nbastot))
ALLOCATE(F1e(nbastot,nbastot), F2e(nbastot,nbastot,kmax)) ! modified by DIIS to save F of each step
ALLOCATE(Fnow(nbastot,nbastot)) ! modified by DIIS to save F of each step
ALLOCATE(orth(nbastot,nbastot), eigval(nbastot))
ALLOCATE(work(nbastot*10), X(nbastot,nbastot))
ALLOCATE(E(nbastot), C(nbastot,nbastot))
ALLOCATE(Dnow(nbastot,nbastot), Dold(nbastot,nbastot))
ALLOCATE(ErrF(nbastot,nbastot,kmax)) ! Allocate ErrF for DIIS
! Initialize basis set
WRITE(*,*) 'Basis: STO-3G'
INQUIRE(FILE='param.dat',EXIST=fexist)
IF(fexist /= .TRUE.) THEN
WRITE(*,*) "Error : param not found."
STOP
ENDIF
OPEN(10,FILE='param.dat') ! P184 of Szabo's book
READ(10,*) a1s(:)
READ(10,*) d1s(:)
READ(10,*) a2sp(:)
READ(10,*) d2s(:)
READ(10,*) d2p(:)
DO i = 1, 10
READ(10,*) z1s(i), z2sp(i)
END DO
k = 0
DO i = 1, natom
IF(nutyp(i)>=1 .and. nutyp(i)<=2) THEN
DO j = 1, 3
cent(:,k+j) = cor(:,i)
END DO
alp(k+1:k+3) = a1s(:)
k = k + 3
ELSE IF(nutyp(i)>=3 .and. nutyp(i) <=10) THEN
DO j = 1, 6
cent(:,k+j) = cor(:,i)
END DO
alp(k+1:k+3) = a1s(:)
alp(k+4:k+6) = a2sp(:)
k = k + 6
END IF
END DO
WRITE(*,*) 'Job starts.'
! Initial guess
Dnow = 0d0
DO i = 1, nocc
Dnow = 1d0
END DO
Dold = Dnow
END SUBROUTINE INIT
SUBROUTINE DIIS(F2e,Fnow)
IMPLICIT NONE
REAL(KIND=double), INTENT(INOUT) :: F2e(:,:,:)
REAL(KIND=double), INTENT(OUT) :: Fnow(:,:)
REAL(KIND=double), ALLOCATABLE :: Bnow(:,:),Bequl(:),Cdiis(:), work2(:)
INTEGER, ALLOCATABLE :: ipiv(:)
ALLOCATE(Bnow(k+1,k+1),Bequl(k+1),Cdiis(k+1),work2(10*k+10),ipiv(k+1))
Bequl = 0d0
Bequl(k+1) = -1d0
DO i = 1, k
DO j = 1, k
Bnow(i,j)=trace(matmul(ErrF(:,:,i),ErrF(:,:,j)))
END DO
END DO
Bnow(:,k+1) = -1d0
Bnow(k+1,:) = -1d0
Bnow(k+1,k+1) = 0d0
Cdiis = Bequl
CALL dsysv('U',k+1,1,Bnow,k+1,ipiv,Cdiis,k+1,work2,10*k+10,ierr)
Fnow = 0d0
DO i = 1, k
Fnow = Fnow + Cdiis(i)*F2e(:,:,i)
END DO
DEALLOCATE(Bnow,Bequl,Cdiis,work2,ipiv)
RETURN
END SUBROUTINE DIIS
SUBROUTINE EIGEN(Fnow,E,C,Dnow,Enow)
IMPLICIT NONE
REAL(KIND=DOUBLE), INTENT(IN) :: Fnow(:,:)
REAL(KIND=DOUBLE), INTENT(OUT) :: E(:), C(:,:), Dnow(:,:), Enow
C = matmul(X,Fnow(:,:))
C = matmul(C,X)
CALL dsyev('V','L',nbastot,C,nbastot,E,work,nbastot*10,ierr)
C = matmul(X,C)
Dnow = matmul(C(:,1:nocc),transpose(C(:,1:nocc)))
Enow = trace(matmul(Dnow,F1e+F2e(:,:,k)))
WRITE(*,'(A,I5,A,F15.7)') ' Step', k, ' Energy', Enow
END SUBROUTINE EIGEN
FUNCTION trace(mat)
IMPLICIT NONE
REAL(KIND=double) :: mat(:,:), trace
INTEGER :: ndim, i
ndim = size(mat,1)
IF(size(mat,2) /= ndim) THEN
WRITE(*,*) 'Not a square matrix.'
END IF
trace = 0d0
DO i = 1, ndim
trace = trace + mat(i,i)
END DO
RETURN
END FUNCTION trace
END PROGRAM