Skip to content

Latest commit

 

History

History
69 lines (46 loc) · 1.7 KB

README.md

File metadata and controls

69 lines (46 loc) · 1.7 KB

#Apache Spark on Apache Yarn 2.6.0 cluster Docker image

Build the image

If you'd like to try directly from the Dockerfile you can build the image as:

sudo docker build  -t yarn-cluster .

Start an Apache Yarn namenode container

In order to use the Docker image you have just build or pulled use:

sudo docker run -i -t --name namenode -h namenode yarn-cluster /etc/bootstrap.sh -bash -namenode

You should now be able to access the Hadoop Admin UI at

http://:8088/cluster

Make sure that SELinux is disabled on the host. If you are using boot2docker you don't need to do anything.

Start an Apache Yarn datanode container

In order to add data nodes to the Apache Yarn cluster, use:

sudo docker run -i -t --link namenode:namenode --dns=namenode yarn-cluster /etc/bootstrap.sh -bash -datanode

You should now be able to access the HDFS Admin UI at

http://:50070

Make sure that SELinux is disabled on the host. If you are using boot2docker you don't need to do anything.

docker-compose

docker-compose up -d .

attach container

docker exec -it namenode /bin/bash     # yarn namenode
docker exec -it datanode01 /bin/bash   # yarn datanode01
docker exec -it datanode02 /bin/bash   # yarn datanode02
docker exec -it datanode03 /bin/bash   # yarn datanode03
docker exec -it spark /bin/bash        # spark client

Testing

You can run one of the stock examples:

cd $HADOOP_PREFIX

# add input files
bin/hdfs dfs -mkdir -p /user/root
bin/hdfs dfs -put $HADOOP_PREFIX/etc/hadoop/ input

# run the mapreduce
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep input output 'dfs[a-z.]+'

# check the output
bin/hdfs dfs -cat output/*