Skip to content

An R package for causal inference in time series

License

Notifications You must be signed in to change notification settings

Aanai/CausalImpact

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CausalImpact

R-CMD-check

An R package for causal inference using Bayesian structural time-series models

This R package implements an approach to estimating the causal effect of a designed intervention on a time series. For example, how many additional daily clicks were generated by an advertising campaign? Answering a question like this can be difficult when a randomized experiment is not available. The package aims to address this difficulty using a structural Bayesian time-series model to estimate how the response metric might have evolved after the intervention if the intervention had not occurred.

As with all approaches to causal inference on non-experimental data, valid conclusions require strong assumptions. The CausalImpact package, in particular, assumes that the outcome time series can be explained in terms of a set of control time series that were themselves not affected by the intervention. Furthermore, the relation between treated series and control series is assumed to be stable during the post-intervention period. Understanding and checking these assumptions for any given application is critical for obtaining valid conclusions.

Installation

install.packages("CausalImpact")
library(CausalImpact)

Getting started

Video tutorial

Documentation and examples

Further resources

About

An R package for causal inference in time series

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%