Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020).
Update (June 29, 2020): We have added interactive visualizations of topics learned by our model.
Update (May 25, 2020): We have added a PyTorch implementation of the text-based ideal point model.
Update (May 11, 2020): See our Colab notebook to run the model online. Our Github code is more complete, and it can be used to reproduce all of our experiments. However, the TBIP is fastest on GPU, so if you do not have access to a GPU you can use Colab's GPUs for free.
Configure a virtual environment using Python 3.6+ (instructions here).
Inside the virtual environment, use pip
to install the required packages:
(venv)$ pip install -r requirements.txt
The main dependencies are Tensorflow (1.14.0) and Tensorflow Probability (0.7.0).
To run on CPU, a version of Tensorflow that does not use GPU must be installed. In
requirements.txt,
comment out the line that says tensorflow-gpu==1.14.0
and uncomment the line that says
tensorflow==1.14.0
. Note: the script will be noticeably slower on CPU.
Preprocessed Senate speech data for the 114th Congress is included in data/senate-speeches-114. The original data is from [1]. Preprocessed 2020 Democratic presidential candidate tweet data is included in data/candidate-tweets-2020.
To include a customized data set, first create a repo data/{dataset_name}/clean/
. The
following four files must be inside this folder:
counts.npz
: a[num_documents, num_words]
sparse CSR matrix containing the word counts for each document.author_indices.npy
: a[num_documents]
vector where each entry is an integer in the set{0, 1, ..., num_authors - 1}
, indicating the author of the corresponding document incounts.npz
.vocabulary.txt
: a[num_words]
-length file where each line denotes the corresponding word in the vocabulary.author_map.txt
: a[num_authors]
-length file where each line denotes the name of an author in the corpus.
See data/senate-speeches-114/clean for an example of what the four files look like for Senate speeches. The script setup/senate_speeches_to_bag_of_words.py contains example code for creating the four files from unprocessed data.
Run tbip.py to produce ideal points. For the Senate speech data, use the command:
(venv)$ python tbip.py --data=senate-speeches-114 --batch_size=512
You can view Tensorboard while training to see summaries of training (including the learned ideal points and ideological topics). To run Tensorboard, use the command:
(venv)$ tensorboard --logdir=data/senate-speeches-114/tbip-fits/ --port=6006
The command should output a link where you can view the Tensorboard results in real time.
The fitted parameters will be stored in data/senate-speeches-114/tbip-fits/params
.
To perform the above analyses for the 2020 Democratic candidate tweets, replace senate-speeches-114
with candidate-tweets-2020
.
To run custom data, we recommend training Poisson factorization before running the TBIP script
for best results. If you have custom data stored in data/{dataset_name}/clean/
, you can run
(venv)$ python setup/poisson_factorization.py --data={dataset_name}
The default number of topics is 50. To use a different number of topics, e.g. 100, use the flag --num_topics=100
.
After Poisson factorization finishes, use the following command to run the TBIP:
(venv)$ python tbip.py --data={dataset_name}
You can adjust the batch size, learning rate, number of topics, and number of steps by using the flags
--batch_size
, --learning_rate
, --num_topics
, and --max_steps
, respectively.
To run the TBIP without initializing from Poisson factorization, use the flag --pre_initialize_parameters=False
.
To view the results in Tensorboard, run
(venv)$ tensorboard --logdir=data/{dataset_name}/tbip-fits/ --port=6006
Again, the learned parameters will be stored in data/{dataset_name}/tbip-fits/params
.
NOTE: Since the publication of our paper, we have made small changes to the code that have sped up
inference. A byproduct of these changes is that the Tensorflow graph has changed, so its random
seed does not produce the same results as before the changes, even though the data, model, and
inference are all the same. To reproduce the exact paper results, one must git checkout
to a
version of our repository from before these changes:
(venv)$ git checkout 31d161e
The commands below will reproduce all of the paper results. The following data is required before running the commands:
- Senate votes: The original raw data can be found at [2]. The paper includes experiments
for Senate sessions 111-114. For each Senate session, we need three files: one for votes,
one for members, and one for rollcalls. For example, for Senate session 114,
we would use the files:
S114_votes.csv
,S114_members.csv
,S114_rollcalls.csv
. Make a repodata/senate-votes
and store these three files indata/senate-votes/114/raw/
. Repeat for Senate sessions 111-113. - Senate speeches: The original raw data can be found at [1]. Specifically, we use the
hein-daily
data for the 114th Senate session. The files needed arespeeches_114.txt
,descr_114.txt
, and114_SpeakerMap.txt
. Make sure the relevant files are stored indata/senate-speeches-114/raw/
. - Senator tweets: The data was provided to us by Voxgov [3].
- Senate speech comparisons: We use a separate data set for the Senate speech comparisons
because speech debates must be labeled for Wordshoal. The raw data can be found at [4].
The paper includes experiments for Senate sessions 111-113. We need the files
speaker_senator_link_file.csv
,speeches_Senate_111.tab
,speeches_Senate_112.tab
, andspeeches_Senate_113.tab
. These files should all be stored indata/senate-speech-comparisons/raw/
. - Democratic presidential candidate tweets: Download the raw tweets
here
and store
tweets.csv
in the folderdata/candidate-tweets-2020/raw/
.
(venv)$ python setup/preprocess_senate_votes.py --senate_session=111
(venv)$ python setup/preprocess_senate_votes.py --senate_session=112
(venv)$ python setup/preprocess_senate_votes.py --senate_session=113
(venv)$ python setup/preprocess_senate_votes.py --senate_session=114
(venv)$ python setup/vote_ideal_points.py --senate_session=111
(venv)$ python setup/vote_ideal_points.py --senate_session=112
(venv)$ python setup/vote_ideal_points.py --senate_session=113
(venv)$ python setup/vote_ideal_points.py --senate_session=114
(venv)$ python analysis/analyze_vote_ideal_points.py
(venv)$ python setup/senate_speeches_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py --data=senate-speeches-114
(venv)$ python tbip.py --data=senate-speeches-114 --counts_transformation=log --batch_size=512 --max_steps=150000
(venv)$ python analysis/analyze_senate_speeches.py
Preprocess, run the TBIP and Wordfish, and perform analysis for tweets from senators during the 114th Senate
(venv)$ python setup/senate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py --data=senate-tweets-114
(venv)$ python tbip.py --data=senate-tweets-114 --batch_size=1024 --max_steps=100000
(venv)$ python model_comparison/wordfish.py --data=senate-tweets-114 --max_steps=50000
(venv)$ python analysis/analyze_senate_tweets.py
(venv)$ python setup/preprocess_senate_speech_comparisons.py --senate_session=111
(venv)$ python setup/preprocess_senate_speech_comparisons.py --senate_session=112
(venv)$ python setup/preprocess_senate_speech_comparisons.py --senate_session=113
(venv)$ python setup/poisson_factorization.py --data=senate-speech-comparisons --senate_session=111
(venv)$ python setup/poisson_factorization.py --data=senate-speech-comparisons --senate_session=112
(venv)$ python setup/poisson_factorization.py --data=senate-speech-comparisons --senate_session=113
(venv)$ python tbip.py --data=senate-speech-comparisons --max_steps=200000 --senate_session=111 --batch_size=128
(venv)$ python tbip.py --data=senate-speech-comparisons --max_steps=200000 --senate_session=112 --batch_size=128
(venv)$ python tbip.py --data=senate-speech-comparisons --max_steps=200000 --senate_session=113 --batch_size=128
(venv)$ python model_comparison/wordfish.py --data=senate-speech-comparisons --max_steps=50000 --senate_session=111
(venv)$ python model_comparison/wordfish.py --data=senate-speech-comparisons --max_steps=50000 --senate_session=112
(venv)$ python model_comparison/wordfish.py --data=senate-speech-comparisons --max_steps=50000 --senate_session=113
(venv)$ python model_comparison/wordshoal.py --data=senate-speech-comparisons --max_steps=30000 --senate_session=111 --batch_size=1024
(venv)$ python model_comparison/wordshoal.py --data=senate-speech-comparisons --max_steps=30000 --senate_session=112 --batch_size=1024
(venv)$ python model_comparison/wordshoal.py --data=senate-speech-comparisons --max_steps=30000 --senate_session=113 --batch_size=1024
(venv)$ python analysis/compare_tbip_wordfish_wordshoal.py
(venv)$ python setup/candidate_tweets_to_bag_of_words.py
(venv)$ python setup/poisson_factorization.py --data=candidate-tweets-2020
(venv)$ python tbip.py --data=candidate-tweets-2020 --batch_size=1024 --max_steps=100000
(venv)$ python analysis/analyze_candidate_tweets.py
(venv)$ python analysis/make_figures.py
[1] Matthew Gentzkow, Jesse M. Shapiro, and Matt Taddy. Congressional Record for the 43rd-114th Congresses: Parsed Speeches and Phrase Counts. Palo Alto, CA: Stanford Libraries [distributor], 2018-01-16. https://data.stanford.edu/congress_text
[2] Jeffrey B. Lewis, Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2020). Voteview: Congressional Roll-Call Votes Database. https://voteview.com/
[3] VoxGovFEDERAL, U.S. Senators tweets from the 114th Congress. 2020. https://voxgov.com
[4] Benjamin E. Lauderdale and Alexander Herzog. Replication Data for: Measuring Political Positions from Legislative Speech. In Harvard Dataverse, 2016. https://doi.org/10.7910/DVN/RQMIV3