Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NYU HPC Greene setup #316

Merged
merged 12 commits into from
Dec 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions .env.template
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# .env template

# Path for logs
LOG_FOLDER=

# Your HPC account code
NYU_HPC_ACCOUNT=

# NYU ID
USERNAME=

SINGULARITY_IMAGE=
OVERLAY_FILE=
10 changes: 8 additions & 2 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,6 @@ celerybeat.pid
*.sage.py

# Environments
.env
.venv
venv/
ENV/
Expand Down Expand Up @@ -239,4 +238,11 @@ pyrightconfig.json

*~

# End of https://www.toptal.com/developers/gitignore/api/python,c++
# Environment variables
# To be manually created using .env.template
.env

# Logs
examples/experiments/scripts/logs/*

# End of https://www.toptal.com/developers/gitignore/api/python,c++
4 changes: 2 additions & 2 deletions baselines/ippo/config/ippo_ff_puffer.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,8 @@ data_dir: "data/processed/examples"
environment: # Overrides default environment configs (see pygpudrive/env/config.py)
name: "gpudrive"
num_worlds: 100 # Number of parallel environments
k_unique_scenes: 100 # Number of unique scenes to sample from
max_controlled_agents: 32 # Maximum number of agents controlled by the model. Make sure this aligns with the variable kMaxAgentCount in src/consts.hpp
k_unique_scenes: 3 # Number of unique scenes to sample from
max_controlled_agents: 128 # Maximum number of agents controlled by the model. Make sure this aligns with the variable kMaxAgentCount in src/consts.hpp
ego_state: true
road_map_obs: true
partner_obs: true
Expand Down
78 changes: 72 additions & 6 deletions baselines/ippo/ippo_pufferlib.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,20 +7,26 @@
"""

import os
from typing import Optional
from typing_extensions import Annotated
import yaml
from datetime import datetime
import torch
import wandb
from box import Box
from integrations.rl.puffer import ppo
from integrations.rl.puffer.puffer_env import env_creator
from integrations.rl.puffer.utils import Policy, LiDARPolicy
from integrations.rl.puffer.utils import Policy

import pufferlib
import pufferlib.vector
import pufferlib.frameworks.cleanrl
from rich.console import Console

import typer
from typer import Typer

app = Typer()

def load_config(config_path):
"""Load the configuration file."""
Expand All @@ -42,7 +48,7 @@ def make_policy(env):
return pufferlib.frameworks.cleanrl.Policy(Policy(env))


def train(args):
def train(args, make_env):
"""Main training loop for the PPO agent."""
args.wandb = init_wandb(args, args.train.exp_id, id=args.train.exp_id)
args.train.__dict__.update(dict(args.wandb.config.train))
Expand Down Expand Up @@ -131,9 +137,66 @@ def sweep(args, project="PPO", sweep_name="my_sweep"):
wandb.agent(sweep_id, lambda: train(args), count=100)


if __name__ == "__main__":

config = load_config("baselines/ippo/config/ippo_ff_puffer.yaml")
@app.command()
def run(
config_path: Annotated[
str, typer.Argument(help="The path to the default configuration file")
] = "baselines/ippo/config/ippo_ff_puffer.yaml",
*,
#fmt: off
# Environment options
num_worlds: Annotated[Optional[int], typer.Option(help="Number of parallel envs")] = None,
k_unique_scenes: Annotated[Optional[int], typer.Option(help="The number of unique scenes to sample")] = None,
collision_weight: Annotated[Optional[float], typer.Option(help="The weight for collision penalty")] = None,
off_road_weight: Annotated[Optional[float], typer.Option(help="The weight for off-road penalty")] = None,
goal_achieved_weight: Annotated[Optional[float], typer.Option(help="The weight for goal-achieved reward")] = None,
dist_to_goal_threshold: Annotated[Optional[float], typer.Option(help="The distance threshold for goal-achieved")] = None,
sampling_seed: Annotated[Optional[int], typer.Option(help="The seed for sampling scenes")] = None,
obs_radius: Annotated[Optional[float], typer.Option(help="The radius for the observation")] = None,
# Train options
learning_rate: Annotated[Optional[float], typer.Option(help="The learning rate for training")] = None,
resample_scenes: Annotated[Optional[int], typer.Option(help="Whether to resample scenes during training; 0 or 1")] = None,
resample_interval: Annotated[Optional[int], typer.Option(help="The interval for resampling scenes")] = None,
total_timesteps: Annotated[Optional[int], typer.Option(help="The total number of training steps")] = None,
ent_coef: Annotated[Optional[float], typer.Option(help="Entropy coefficient")] = None,
# Wandb logging options
project: Annotated[Optional[str], typer.Option(help="WandB project name")] = None,
entity: Annotated[Optional[str], typer.Option(help="WandB entity name")] = None,
group: Annotated[Optional[str], typer.Option(help="WandB group name")] = None,
):
"""Run PPO training with the given configuration."""
#fmt: on

# Load default configs
config = load_config(config_path)

# Override configs with command-line arguments
env_config = {
"num_worlds": num_worlds,
"k_unique_scenes": k_unique_scenes,
"collision_weight": collision_weight,
"off_road_weight": off_road_weight,
"goal_achieved_weight": goal_achieved_weight,
"dist_to_goal_threshold": dist_to_goal_threshold,
"sampling_seed": sampling_seed,
"obs_radius": obs_radius,
}
config.environment.update({k: v for k, v in env_config.items() if v is not None})
train_config = {
"learning_rate": learning_rate,
"resample_scenes": None if resample_scenes is None else bool(resample_scenes),
"resample_interval": resample_interval,
"total_timesteps": total_timesteps,
"ent_coef": ent_coef,
}
config.train.update({k: v for k, v in train_config.items() if v is not None})

wandb_config = {
"project": project,
"entity": entity,
"group": group,
}
config.wandb.update({k: v for k, v in wandb_config.items() if v is not None})

make_env = env_creator(
data_dir=config.data_dir,
Expand All @@ -143,4 +206,7 @@ def sweep(args, project="PPO", sweep_name="my_sweep"):
)

if config.mode == "train":
train(config)
train(config, make_env)

if __name__ == "__main__":
app()
20 changes: 0 additions & 20 deletions baselines/scripts/bash_exec_paper_fig.sh

This file was deleted.

4 changes: 0 additions & 4 deletions baselines/scripts/bash_exec_solve_n_scenes.sh

This file was deleted.

14 changes: 0 additions & 14 deletions baselines/scripts/sbatch_ippo.sh

This file was deleted.

17 changes: 0 additions & 17 deletions baselines/scripts/sbatch_paper_fig.sh

This file was deleted.

14 changes: 0 additions & 14 deletions baselines/scripts/sbatch_solve_n_scenes.sh

This file was deleted.

This file was deleted.

Binary file removed data/processed/waymax/scenario_ab2a72c63f8fd589.pkl
Binary file not shown.
Binary file not shown.
Binary file not shown.
7 changes: 6 additions & 1 deletion environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -62,4 +62,9 @@ dependencies:
- urllib3==2.2.1
- virtualenv==20.25.1
- zipp==3.18.1
- huggingface_hub==0.26.5
- huggingface_hub==0.26.5
- wandb==0.19.1
- python-box==7.3.0
- python-dotenv==1.0.1
- jax==0.4.0
- typer==0.9.0
Loading
Loading