This is the gitlab project for camorph, a camera parameter converting tool written in python 3.9.
- Fixed an issue with FULL_OPENCV models when writing binary COLMAP files
- Fixed an issue with shallow copying in the read_file() for NeRF when using individual image resolutions
Documentation can be found here.
Some quick tips on how to use camorph.
If you want to work on camorph, clone the repo and install the conda environment by running
conda env create -f camorph_win.yml
Otherwise, you can also install camorph with pip
pip install git+https://github.com/Fraunhofer-IIS/camorph
Use the library to convert camera parameter representations:
import camorph.camorph as camorph
cams = camorph.read_cameras('COLMAP',r'\\path\to\colmap')
camorph.visualize(cams)
camorph.write_cameras('fbx', r'\\path\to\file.fbx', cams)
camorph.read_cameras()
takes a format name and path as a string and returns a list of Cameras.
camorph.visualize()
creates a visualization of Cameras with Matplotlib.
camorph.write_cameras()
takes a format name, a path as a string and a list of cameras and writes the output file(s) to the specified path.
You can use the command line interface by calling
python -m camorph -h
or when installed with pip
camorph -h
This will output the help for the command line interface
usage: camorph [-h] -i input_path [input_path ...] -if input_format [-o output_path] [-of output_format] [-v]
[-c config] [-ft file_type] [-pt] [-cr crop] [-s scale] [-id image_dir] [-ci]
Convert Cameras from different formats to each other
optional arguments:
-h, --help show this help message and exit
-i input_path [input_path ...], --input input_path [input_path ...]
the input path of the camera file(s) to read
-if input_format, --input_format input_format
the format of the input camera file(s)
-o output_path, --output output_path
the output path where the camera file(s) should be saved
-of output_format, --output_format output_format
the format of the output camera file(s)
-v, --visualize when this parameter is present, the cameras will be visualized.
-c config, --config config
the path to a config.json file for missing crucial properties
-ft file_type, --file_type file_type
some formats support different types of output files, for example bin for binary and txt for
ascii files
-pt, --posetrace treat the input as a posetrace and ignore any source images.
-cr crop, --crop crop
crop source image attributes by the specified top left and bottom right corner. Format:
"leftcorner_x,leftcorner_y,rightcorner_x,rightcorner_y". ATTENTION: THIS DOES NOT MODIFY THE IMAGES, ONLY THE PROPERTIES IN THE FILE!
-s scale, --scale scale
scale source image attributes by the specified factor. ATTENTION: THIS DOES NOT MODIFY THE IMAGES, ONLY THE PROPERTIES IN THE FILE!
-id image_dir, --image-dir image_dir
replace the directory for the source images with this.
-ci, --check-images check if images exist and are of the right resolution.
For example
camorph -i \path\to\json -if nerf -o \path\to\output -of fbx
If there are missing crucial properties, camorph will automatically create a config.json
in the target folder.
To edit this file, please refer to the "Crucial Properties" section of the documentation
If you want to convert a camera animation, which does not have source images (sometimes also referred to as pose trace), you can add the -pt
argument to ignore any source image requirements.
This option crops and scales the attributes of images in the file. For example, colmap stores the resolution of the images, which can be modified by this parameter.
❗❗❗ THIS DOES NOT MODIFY THE IMAGES THEMSELVES! ❗❗❗
-
Computer Graphics
- FBX (Key: "fbx")
-
Photogrammetry
- COLMAP (Key: "colmap")
- Meshroom (Key: "meshroom")
- Reality Capture (Key: "reality_capture")
- Local Light Field Fusion (Key: "llff")
-
Game Engines
- Unity (Key: "unity")
-
Virtual Reality
- MPEG OMAF (Key: "mpeg_omaf")
-
Machine Learning
- NeRF (Key: "nerf")
@article{Brand2022CAMORPHAT,
title={CAMORPH: A TOOLBOX FOR CONVERSION BETWEEN CAMERA PARAMETER
CONVENTIONS},
author={B. Brand and Michel B{\"a}tz and Joachim Keinert},
journal={The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
year={2022}
}