Skip to content

Hur1k/GPEN

 
 

Repository files navigation

GAN Prior Embedded Network for Blind Face Restoration in the Wild

Paper | Supplementary | Demo | ModelScope

Hugging Face Spaces

Tao Yang1, Peiran Ren1, Xuansong Xie1, Lei Zhang1,2
1DAMO Academy, Alibaba Group, Hangzhou, China
2Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Face Restoration

Selfie Restoration

Face Colorization

Face Inpainting

Conditional Image Synthesis (Seg2Face)

News

(2023-02-15) GPEN-BFR-1024 and GPEN-BFR-2048 are now publicly available. Please download them via [ModelScope2].

(2023-02-15) We provide online demos via [ModelScope1] and [ModelScope2].

(2022-05-16) Add x1 sr model. Add --tile_size to avoid OOM.

(2022-03-15) Add x4 sr model. Try --sr_scale.

(2022-03-09) Add GPEN-BFR-2048 for selfies. I have to take it down due to commercial issues. Sorry about that.

(2021-12-29) Add online demos Hugging Face Spaces. Many thanks to CJWBW and AK391.

(2021-12-16) Release a simplified training code of GPEN. It differs from our implementation in the paper, but could achieve comparable performance. We strongly recommend to change the degradation model.

(2021-12-09) Add face parsing to better paste restored faces back.

(2021-12-09) GPEN can run on CPU now by simply discarding --use_cuda.

(2021-12-01) GPEN can now work on a Windows machine without compiling cuda codes. Please check it out. Thanks to Animadversio. Alternatively, you can try GPEN-Windows. Many thanks to Cioscos.

(2021-10-22) GPEN can now work with SR methods. A SR model trained by myself is provided. Replace it with your own model if necessary.

(2021-10-11) The Colab demo for GPEN is available now google colab logo.

Usage

python pytorch cuda driver gcc

  • Clone this repository:
git clone https://github.com/yangxy/GPEN.git
cd GPEN
python demo.py --task FaceEnhancement --model GPEN-BFR-512 --in_size 512 --channel_multiplier 2 --narrow 1 --use_sr --sr_scale 4 --use_cuda --save_face --indir examples/imgs --outdir examples/outs-bfr
  • Colorize faces:
python demo.py --task FaceColorization --model GPEN-Colorization-1024 --in_size 1024 --use_cuda --indir examples/grays --outdir examples/outs-colorization
  • Complete faces:
python demo.py --task FaceInpainting --model GPEN-Inpainting-1024 --in_size 1024 --use_cuda --indir examples/ffhq-10 --outdir examples/outs-inpainting
  • Synthesize faces:
python demo.py --task Segmentation2Face --model GPEN-Seg2face-512 --in_size 512 --use_cuda --indir examples/segs --outdir examples/outs-seg2face
  • Train GPEN for BFR with 4 GPUs:
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 train_simple.py --size 1024 --channel_multiplier 2 --narrow 1 --ckpt weights --sample results --batch 2 --path your_path_of_croped+aligned_hq_faces (e.g., FFHQ)

When testing your own model, set --key g_ema.

Please check out run.sh for more details.

Main idea

Citation

If our work is useful for your research, please consider citing:

@inproceedings{Yang2021GPEN,
    title={GAN Prior Embedded Network for Blind Face Restoration in the Wild},
    author={Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021}
}

License

© Alibaba, 2021. For academic and non-commercial use only.

Acknowledgments

We borrow some codes from Pytorch_Retinaface, stylegan2-pytorch, Real-ESRGAN, and GFPGAN.

Contact

If you have any questions or suggestions about this paper, feel free to reach me at [email protected].

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 75.9%
  • Python 22.6%
  • Cuda 1.2%
  • Other 0.3%