-
Notifications
You must be signed in to change notification settings - Fork 271
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #101 from ImperialCollegeLondon/Italy
Italy
- Loading branch information
Showing
23 changed files
with
287,889 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
library(ggplot2) | ||
library(tidyr) | ||
library(dplyr) | ||
library(rstan) | ||
library(data.table) | ||
library(lubridate) | ||
library(gdata) | ||
library(EnvStats) | ||
library(matrixStats) | ||
library(scales) | ||
library(gridExtra) | ||
library(bayesplot) | ||
library(cowplot) | ||
|
||
|
||
#--------------------------------------------------------------------------- | ||
format_data <- function(i, dates, countries, estimated_cases_raw, estimated_deaths_raw, | ||
reported_cases, reported_deaths, out, forecast=0, SIM = FALSE){ | ||
|
||
N <- length(dates[[i]]) | ||
if(forecast > 0) { | ||
dates[[i]] = c(dates[[i]], max(dates[[i]]) + 1:forecast) | ||
N = N + forecast | ||
reported_cases[[i]] = c(reported_cases[[i]],rep(NA,forecast)) | ||
reported_deaths[[i]] = c(reported_deaths[[i]],rep(NA,forecast)) | ||
} | ||
|
||
country <- countries[[i]] | ||
|
||
estimated_cases <- colMeans(estimated_cases_raw[,1:N,i]) | ||
estimated_cases_li <- colQuantiles(estimated_cases_raw[,1:N,i], probs=.025) | ||
estimated_cases_ui <- colQuantiles(estimated_cases_raw[,1:N,i], probs=.975) | ||
estimated_cases_li2 <- colQuantiles(estimated_cases_raw[,1:N,i], probs=.25) | ||
estimated_cases_ui2 <- colQuantiles(estimated_cases_raw[,1:N,i], probs=.75) | ||
|
||
estimated_deaths <- colMeans(estimated_deaths_raw[,1:N,i]) | ||
estimated_deaths_li <- colQuantiles(estimated_deaths_raw[,1:N,i], probs=.025) | ||
estimated_deaths_ui <- colQuantiles(estimated_deaths_raw[,1:N,i], probs=.975) | ||
estimated_deaths_li2 <- colQuantiles(estimated_deaths_raw[,1:N,i], probs=.25) | ||
estimated_deaths_ui2 <- colQuantiles(estimated_deaths_raw[,1:N,i], probs=.75) | ||
|
||
rt <- colMeans(out$Rt_adj[,1:N,i]) | ||
rt_li <- colQuantiles(out$Rt_adj[,1:N,i],probs=.025) | ||
rt_ui <- colQuantiles(out$Rt_adj[,1:N,i],probs=.975) | ||
rt_li2 <- colQuantiles(out$Rt_adj[,1:N,i],probs=.25) | ||
rt_ui2 <- colQuantiles(out$Rt_adj[,1:N,i],probs=.75) | ||
|
||
if (SIM == FALSE){ | ||
mu <- mean(out$mu[,i]) | ||
mu_li <- quantile(out$mu[,i], probs=.025) | ||
mu_ui <- quantile(out$mu[,i], probs=.975) | ||
} | ||
|
||
|
||
|
||
data_state_plotting <- data.frame("date" = dates[[i]], | ||
"country" = rep(country, length(dates[[i]])), | ||
"reported_cases" = reported_cases[[i]], | ||
"predicted_cases" = estimated_cases, | ||
"cases_min" = estimated_cases_li, | ||
"cases_max" = estimated_cases_ui, | ||
"cases_min2" = estimated_cases_li2, | ||
"cases_max2" = estimated_cases_ui2, | ||
"reported_deaths" = reported_deaths[[i]], | ||
"estimated_deaths" = estimated_deaths, | ||
"deaths_min" = estimated_deaths_li, | ||
"deaths_max"= estimated_deaths_ui, | ||
"deaths_min2" = estimated_deaths_li2, | ||
"deaths_max2"= estimated_deaths_ui2, | ||
"rt" = rt, | ||
"rt_min" = rt_li, | ||
"rt_max" = rt_ui, | ||
"rt_min2" = rt_li2, | ||
"rt_max2" = rt_ui2) | ||
|
||
if (SIM == FALSE){ | ||
data_state_plotting$mu_rep = rep(mu, length(dates[[i]])) | ||
data_state_plotting$mu_li = rep(mu_li, length(dates[[i]])) | ||
data_state_plotting$mu_ui = rep(mu_ui, length(dates[[i]])) | ||
} | ||
|
||
return(data_state_plotting) | ||
|
||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
library(lubridate) | ||
library(ggplot2) | ||
source("Italy/code/utils/read-data-subnational.r") | ||
source("Italy/code/plotting/format-data-plotting.r") | ||
source("Italy/code/plotting/make-three-panel-plots.r") | ||
source("Italy/code/plotting/make-rt-plot.r") | ||
|
||
make_plots_all <- function(filename, SIM=FALSE, label = "", last_date_data, ext = ".png"){ | ||
print("In subnational code") | ||
load(filename) | ||
countries <- states | ||
|
||
out <- rstan::extract(fit) | ||
|
||
rt_data_long <- NULL | ||
rt_data_wide <- NULL | ||
|
||
interventions <- read_interventions() | ||
|
||
covariates <- interventions | ||
covariates$Country <- as.factor(covariates$Country) | ||
for (i in 1:length(countries)){ | ||
print(countries[i]) | ||
|
||
data_country_plot <- format_data(i = i, dates = dates, countries = countries, | ||
estimated_cases_raw = estimated_cases_raw, | ||
estimated_deaths_raw = estimated_deaths_raw, | ||
reported_cases = reported_cases, | ||
reported_deaths = reported_deaths, | ||
out = out, SIM = SIM) | ||
# Cuts data on last_data_date | ||
data_country_plot <- data_country_plot[which(data_country_plot$date <= last_date_data),] | ||
# Read in covariates | ||
|
||
covariates_long <- gather(covariates[which(covariates$Country == countries[i]), | ||
2:ncol(covariates)], | ||
key = "key", value = "value") | ||
covariates_long$x <- rep(NA, length(covariates_long$key)) | ||
un_dates <- unique(covariates_long$value) | ||
|
||
for (k in 1:length(un_dates)){ | ||
idxs <- which(covariates_long$value == un_dates[k]) | ||
max_val <- ceiling(max(data_country_plot$rt_max) +0.3) | ||
for (k in idxs){ | ||
covariates_long$x[k] <- max_val | ||
max_val <- max_val - 0.3 | ||
} | ||
} | ||
|
||
print(sprintf("Last line of data: %s", data_country_plot$date[length(data_country_plot$rt)])) | ||
|
||
|
||
len <- length(data_country_plot$rt) | ||
rt_data_state_long <- data.frame("state" = c(as.character(countries[i]), as.character(countries[i])), | ||
"x" = c("start", "end"), | ||
"rt" = c(data_country_plot$rt[1], | ||
mean(data_country_plot$rt[(len-6):len])), | ||
"rt_min" = c(data_country_plot$rt_min[1], | ||
mean(data_country_plot$rt_min[(len-6):len])), | ||
"rt_max" = c(data_country_plot$rt_max[1], | ||
mean(data_country_plot$rt_max[(len-6):len]))) | ||
rt_data_long <- rbind(rt_data_long, rt_data_state_long) | ||
|
||
# Make the three panel plot | ||
make_three_panel_plots(data_country_plot, jobid = JOBID, country = countries[i], | ||
covariates_long = covariates_long, label = label) | ||
} | ||
|
||
print("Making rt plot") | ||
rt_data_long$x <- factor(rt_data_long$x, levels = c("start", "end")) | ||
|
||
region_to_macro=rbind( | ||
data.frame(country= c("Aosta","Liguria","Lombardy","Piedmont"), macro="NorthWest"), | ||
data.frame(country=c("Emilia-Romagna","Friuli-Venezia_Giulia","Trento","Bolzano","Veneto"),macro="NorthEast"), | ||
data.frame(country=c("Lazio","Marche","Tuscany","Umbria"),macro="Centre"), | ||
data.frame(country=c("Abruzzo","Apulia","Basilicata","Calabria","Campania","Molise"),macro="South"), | ||
data.frame(country=c("Sardinia","Sicily"),macro="Islands") | ||
) | ||
names(region_to_macro) <- c("state", "macro") | ||
rt_data_long = rt_data_long %>%inner_join(region_to_macro,) | ||
|
||
|
||
make_rt_point_plot(rt_data_long, JOBID = JOBID, label = label) | ||
|
||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# Make arrow RT plot | ||
library(ggplot2) | ||
library(ggrepel) | ||
|
||
make_rt_point_plot <- function(rt_data_long, JOBID, label= ""){ | ||
# Only choose end | ||
rt_data_end <- rt_data_long[which(rt_data_long$x == "end"),] | ||
rt_data_end <- rt_data_end[order(-rt_data_end$rt),] | ||
rt_data_end$state <- factor(rt_data_end$state, levels = rt_data_end$state) | ||
|
||
rt_data_long$state[which(rt_data_long$state=="Friuli-Venezia_Giulia")]<-"Friuli-Venezia Giulia" | ||
rt_data_end$state[which(rt_data_end$state=="Friuli-Venezia_Giulia")]<-"Friuli-Venezia Giulia" | ||
|
||
p1 <- ggplot(rt_data_end) + | ||
geom_point(aes(x = state, y = rt, col=macro), stat="identity") + | ||
geom_errorbar(aes(x = state, ymin = rt_min, ymax = rt_max, col=macro), width=0) + | ||
geom_hline(aes(yintercept=1)) + | ||
xlab("Region") + ylab(expression(R[t])) + | ||
scale_y_continuous(expand = c(0, 0)) + | ||
scale_colour_discrete(name = "") + | ||
coord_flip() + | ||
theme(axis.line = element_line(colour = "black"), | ||
panel.grid.major = element_blank(), | ||
panel.grid.minor = element_blank(), | ||
panel.background = element_blank(), | ||
legend.key = element_blank(),legend.position = "bottom")+guides(colour = guide_legend(nrow = 2)) | ||
#ggtitle("Final Rt") | ||
p1 | ||
ggsave(paste0("Italy/figures/rt_point_final", "_", label, "_", JOBID, ".pdf"), | ||
p1, width = 5, height=10) | ||
|
||
# Only choose start | ||
rt_data_start <- rt_data_long[which(rt_data_long$x == "start"),] | ||
rt_data_start <- rt_data_start[order(-rt_data_start$rt),] | ||
rt_data_start$state <- factor(rt_data_start$state, levels = rt_data_start$state) | ||
|
||
rt_data_start$state[which(rt_data_start$state=="Friuli-Venezia_Giulia")]<-"Friuli-Venezia Giulia" | ||
|
||
p2 <- ggplot(rt_data_start) + | ||
geom_point(aes(x = state, y = rt, col = macro), stat="identity") + | ||
geom_errorbar(aes(x = state, ymin = rt_min, ymax = rt_max, col=macro), width = 0) + | ||
geom_hline(aes(yintercept=1)) + | ||
xlab("Region") + ylab(expression(R[t])) + | ||
scale_y_continuous(expand = c(0, 0)) + | ||
scale_colour_discrete(name = "") + | ||
coord_flip() + | ||
theme(axis.line = element_line(colour = "black"), | ||
panel.grid.major = element_blank(), | ||
panel.grid.minor = element_blank(), | ||
panel.background = element_blank(), | ||
legend.key = element_blank(),legend.position = "bottom") +guides(colour = guide_legend(nrow = 2)) | ||
#ggtitle("Inital Rt") | ||
ggsave(paste0("Italy/figures/rt_point_start_", label, "_", JOBID, ".png"), p2, width = 5, height=10) | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
library(dplyr) | ||
library(lubridate) | ||
library(grid) | ||
library(gtable) | ||
source("Italy/code/plotting/format-data-plotting.r") | ||
|
||
make_scenario_comparison_plots_mobility <- function(JOBID, StanModel, len_forecast, last_date_data, | ||
baseline=FALSE, mobility_increase = 20,top=7){ | ||
print(paste0("Making scenario comparision plots for ", mobility_increase , "%")) | ||
load(paste0('Italy/results/sim-constant-mob-', StanModel, '-', len_forecast, '-0-', JOBID, '-stanfit.Rdata')) | ||
|
||
countries <- states | ||
|
||
out <- rstan::extract(fit) | ||
|
||
mob_data <- NULL | ||
for (i in 1:length(countries)){ | ||
data_state_plot <- format_data(i = i, dates = dates, countries = countries, | ||
estimated_cases_raw = estimated_cases_raw, | ||
estimated_deaths_raw = estimated_deaths_raw, | ||
reported_cases = reported_cases, | ||
reported_deaths = reported_deaths, | ||
out = out, forecast = 0, SIM = TRUE) | ||
# Cuts data on last_data_date | ||
data_state_plot <- data_state_plot[which(data_state_plot$date <= last_date_data),] | ||
|
||
subset_data <- select(data_state_plot, country, date, reported_deaths, estimated_deaths, | ||
deaths_min, deaths_max) | ||
subset_data$key <- rep("Constant mobility", length(subset_data$country)) | ||
mob_data <- rbind(mob_data, subset_data) | ||
} | ||
|
||
if (baseline == TRUE){ | ||
load(paste0('Italy/results/sim-increase-mob-baseline-', StanModel, '-', len_forecast, '-', mobility_increase, '-', JOBID, | ||
'-stanfit.Rdata')) | ||
out <- rstan::extract(fit) | ||
} else { | ||
load(paste0('Italy/results/sim-increase-mob-current-', StanModel, '-', len_forecast, '-', mobility_increase, '-', | ||
JOBID, '-stanfit.Rdata')) | ||
out <- rstan::extract(fit) | ||
} | ||
for (i in 1:length(countries)){ | ||
data_state_plot <- format_data(i = i, dates = dates, countries = countries, | ||
estimated_cases_raw = estimated_cases_raw, | ||
estimated_deaths_raw = estimated_deaths_raw, | ||
reported_cases = reported_cases, | ||
reported_deaths = reported_deaths, | ||
out = out, forecast = 0, SIM = TRUE) | ||
# Cuts data on last_data_date | ||
data_state_plot <- data_state_plot[which(data_state_plot$date <= last_date_data),] | ||
subset_data <- select(data_state_plot, country, date, reported_deaths, estimated_deaths, | ||
deaths_min, deaths_max) | ||
subset_data$key <- rep("Increased mobility", length(subset_data$country)) | ||
mob_data <- rbind(mob_data, subset_data) | ||
} | ||
|
||
data_half <- mob_data[which(mob_data$key == "Increased mobility"),] | ||
mob_data$key <- factor(mob_data$key) | ||
data_half$key <- factor(data_half$key) | ||
|
||
#nametrans <- read.csv("Subnational_Analysis/Italy/province_name_translation.csv") | ||
|
||
# To do top 7: | ||
if(top==7){ | ||
mob_data <- mob_data %>% filter(country %in% c("Lombardy","Marche","Veneto","Tuscany","Piedmont","Emilia-Romagna","Liguria")) %>% | ||
droplevels() | ||
|
||
data_half <- data_half %>% filter(country %in% c("Lombardy","Marche","Veneto","Tuscany","Piedmont","Emilia-Romagna","Liguria")) %>% | ||
droplevels() | ||
} | ||
if(top==8){ | ||
# # To do all others" | ||
mob_data <- mob_data %>% filter((country %in% c("Abruzzo","Basilicata","Calabria","Campania","Friuli-Venezia_Giulia","Lazio","Molise"))) %>% | ||
droplevels() | ||
data_half <- data_half %>% filter((country %in% c("Abruzzo","Basilicata","Calabria","Campania","Friuli-Venezia_Giulia","Lazio","Molise"))) %>% | ||
droplevels() | ||
} | ||
if(top==9){ | ||
# # To do all others" | ||
mob_data <- mob_data %>% filter((country %in% c("Bolzano","Trento","Apulia","Sardinia","Sicily","Umbria","Aosta"))) %>% | ||
droplevels() | ||
data_half <- data_half %>% filter((country %in% c("Bolzano","Trento","Apulia","Sardinia","Sicily","Umbria","Aosta"))) %>% | ||
droplevels() | ||
} | ||
|
||
last_date_data<-mob_data$date[nrow(mob_data)] | ||
|
||
#mob_data$label <- mob_data$key %>% str_replace_all(" ", "_") %>% recode( Constant_Mobility= "Mobility held constant", Increased_Mobility = "Increased mobility: ",mobility_increase,"% return to pre-lockdown level") | ||
|
||
levels(mob_data$key)=c("Mobility held constant",paste0("Increased mobility: ",mobility_increase,"% return to pre-lockdown level")) | ||
|
||
p <- ggplot(mob_data) + | ||
geom_bar(data = mob_data, aes(x = date, y = reported_deaths), stat='identity') + | ||
geom_ribbon(aes(x = date, ymin = deaths_min, ymax = deaths_max, group = key, fill = key), alpha = 0.5) + | ||
#geom_line(aes(date,deaths_max),color="black",size=0.2)+ | ||
#geom_line(aes(date,deaths_min),color="black",size=0.2)+ | ||
#geom_line(aes(date,estimated_deaths),group = key,size=0.5)+ | ||
geom_line(aes(date,estimated_deaths, group = key, color = key),size = 1) +scale_colour_manual(values= c("skyblue","red"))+ | ||
#geom_ribbon(aes(x = date, ymin = deaths_min, ymax = deaths_max, fill = "ICL"), alpha = 0.5) + | ||
scale_fill_manual(name = "", labels = c("Mobility held constant", paste0("Increased mobility: ",mobility_increase,"% return to pre-lockdown level")), values = c("skyblue","red")) + | ||
scale_x_date(date_breaks = "2 weeks", labels = date_format("%e %b"), limits = c(as.Date("2020-03-02"), last_date_data)) + | ||
#facet_wrap(~country, scales = "free",nrow=7) + | ||
facet_grid(country ~key, scales = "free_y")+ | ||
xlab("") + ylab("Daily number of deaths") + | ||
theme_minimal() + | ||
theme(axis.text.x = element_text(angle = 45, hjust = 1,size = 26), axis.title = element_text( size = 26 ),axis.text = element_text( size = 26), | ||
legend.position = "none",strip.text = element_text(size = 26),legend.text=element_text(size=26)) | ||
ggsave(paste0("Italy/figures/scenarios_increase_baseline-", len_forecast, '-', mobility_increase, '-', JOBID, "top_",top,".png"), p, height = 30, width = 20) | ||
|
||
} |
Oops, something went wrong.