Skip to content
/ YOLO Public

PyTorch implementation of 'YOLO' (Redmon et al., 2016) from scratch

Notifications You must be signed in to change notification settings

KimRass/YOLO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

1. Theorectical Background

  • Comment: 이 수식의 의미는, '해당 그리드 셀에 오브젝트가 존재한다면' 그 오브젝트의 클래스가 $Class$일 확률입니다.
  • Comment: ground truth bounding box와의 IoU가 낮더라도 오브젝트가 존재할 확률이 높거나 오브젝트가 존재할 확률이 높더라도 ground truth bounding box와의 IoU가 높으면 confidence는 높은 값을 가집니다. $$P(Object) \cdot IOU^{gt}{pred}$$ $$\lambda{coord} \sum^{S^{2}}{i = 0} \sum^{B}{j = 0} \mathbb{1}^{obj}{ij} \bigg[(x{i} - \hat{x}{i})^{2} + (y{i} - \hat{y}{i})^{2} + (\sqrt{w{i}} - \sqrt{\hat{w}{i}})^{2} + (\sqrt{h{i}} - \sqrt{\hat{h}{i}})^{2} + (C{i} - \hat{C}{i})^{2}\bigg] \+ \sum^{S^{2}}{i = 0} \mathbb{1}^{obj}{i} \sum{c \in classes} \big(p_{i}(c) - \hat{p}{i}(c)\big)^{2} \+ \lambda{noobj} \sum^{S^{2}}{i = 0} \sum^{B}{j = 0} 1^{noobj}{ij} \big(C{i} - \hat{C}_{i}\big)^{2}$$
  • $\mathbb{1}^{obj}_{i}$: Denotes if object appears in cell $i$
  • $\mathbb{1}^{obj}_{ij}$: Denotes that the $j$ th bounding box predictor in cell $i$ is "responsible" for that prediction.

$$\lambda_{coord} \sum^{S^{2}}{i = 0} \sum^{B}{j = 0} \mathbb{1}^{obj}{ij} \bigg[ (x{i} - \hat{x}{i})^{2} + (y{i} - \hat{y}{i})^{2} \bigg]$$ $$\lambda{coord} \sum^{S^{2}}{i = 0} \sum^{B}{j = 0} \mathbb{1}^{obj}{ij} \bigg[ (\sqrt{w{i}} - \sqrt{\hat{w}{i}})^{2} + (\sqrt{h{i}} - \sqrt{\hat{h}{i}})^{2} \bigg]$$ $$\sum^{S^{2}}{i = 0} \sum^{B}{j = 0} \mathbb{1}^{obj}{ij} (C_{i} - \hat{C}{i})^{2}$$ $$\lambda{noobj} \sum^{S^{2}}{i = 0} \sum^{B}{j = 0} 1^{noobj}{ij} \big( C{i} - \hat{C}{i} \big)^{2}$$ $$\sum^{S^{2}}{i = 0} \mathbb{1}^{obj}{i} \sum{c \in classes} \big(p_{i}(c) - \hat{p}_{i}(c)\big)^{2}$$

2. Visualization

Ground truth
Model output
Class probability map

3. References

About

PyTorch implementation of 'YOLO' (Redmon et al., 2016) from scratch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published