Skip to content

Commit

Permalink
Update README.md (Table of content, CCP4 move to install)
Browse files Browse the repository at this point in the history
  • Loading branch information
gilep authored and DimaMolod committed Oct 15, 2024
1 parent 97f71ef commit 0bf86ad
Showing 1 changed file with 109 additions and 84 deletions.
193 changes: 109 additions & 84 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,82 +4,93 @@
## Table of Contents

<!-- TOC -->
* [AlphaPulldown: Version 2.0.0 (Beta)](#alphapulldown-version-200-beta)
* [Table of Contents](#table-of-contents)
* [About AlphaPulldown](#about-alphapulldown)
* [Overview](#overview)
* [Alphafold databases](#alphafold-databases)
* [Snakemake AlphaPulldown](#snakemake-alphapulldown)
* [1. Installation](#1-installation)
* [2. Configuration](#2-configuration)
* [3. Execution](#3-execution)
* [Run AlphaPulldown Python Command Line Interface](#run-alphapulldown-python-command-line-interface)
* [0. Installation](#0-installation)
* [0.1. Create Anaconda environment](#01-create-anaconda-environment)
* [0.2. Installation using pip](#02-installation-using-pip)
* [0.3. Installation for the Downstream analysis tools](#03-installation-for-the-downstream-analysis-tools)
* [0.4. Installation for cross-link input data by AlphaLink2 (optional!)](#04-installation-for-cross-link-input-data-by-alphalink2-optional)
* [0.5. Installation for developers](#05-installation-for-developers)
* [1. Compute multiple sequence alignment (MSA) and template features (CPU stage)](#1-compute-multiple-sequence-alignment-msa-and-template-features-cpu-stage)
* [1.1. Basic run](#11-basic-run)
* [Input](#input)
* [Script Execution](#script-execution)
* [Output](#output)
* [Next step](#next-step)
* [1.2. Example bash scripts for SLURM (EMBL cluster)](#12-example-bash-scripts-for-slurm-embl-cluster)
* [Input](#input-1)
* [Script Execution](#script-execution-1)
* [Next step](#next-step-1)
* [1.3. Run using MMseqs2 and ColabFold Databases (Faster)](#13-run-using-mmseqs2-and-colabfold-databases-faster)
* [Run MMseqs2 Remotely](#run-mmseqs2-remotely)
* [Output](#output-1)
* [Run MMseqs2 Locally](#run-mmseqs2-locally)
* [Next step](#next-step-2)
* [1.4. Run with custom templates (TrueMultimer)](#14-run-with-custom-templates-truemultimer)
* [Input](#input-2)
* [Script Execution](#script-execution-2)
* [Output](#output-2)
* [Next step](#next-step-3)
* [2. Predict structures (GPU stage)](#2-predict-structures-gpu-stage)
* [2.1. Basic run](#21-basic-run)
* [Input](#input-3)
* [Script Execution: Structure Prediction](#script-execution-structure-prediction)
* [Output](#output-3)
* [Next step](#next-step-4)
* [2.2. Example run with SLURM (EMBL cluster)](#22-example-run-with-slurm-embl-cluster)
* [Input](#input-4)
* [Script Execution](#script-execution-3)
* [Output and the next step](#output-and-the-next-step)
* [2.3. Pulldown mode](#23-pulldown-mode)
* [Multiple inputs "pulldown" mode](#multiple-inputs-pulldown-mode)
* [2.4. All versus All mode](#24-all-versus-all-mode)
* [Output and the next step](#output-and-the-next-step-1)
* [2.5. Run with Custom Templates (TrueMultimer)](#25-run-with-custom-templates-truemultimer)
* [Input](#input-5)
* [Script Execution for TrueMultimer Structure Prediction](#script-execution-for-truemultimer-structure-prediction)
* [Output and the next step](#output-and-the-next-step-2)
* [2.6. Run with crosslinking-data (AlphaLink2)](#26-run-with-crosslinking-data-alphalink2)
* [Input](#input-6)
* [Run with AlphaLink2 prediction via AlphaPulldown](#run-with-alphalink2-prediction-via-alphapulldown)
* [Output and the next step](#output-and-the-next-step-3)
* [3. Analysis and Visualization](#3-analysis-and-visualization)
* [Create Jupyter Notebook](#create-jupyter-notebook)
* [Next step](#next-step-5)
* [Create Results table](#create-results-table)
* [Next step](#next-step-6)
* [Downstream analysis](#downstream-analysis)
* [Jupyter notebook](#jupyter-notebook)
* [Results table](#results-table)
* [Results management scripts](#results-management-scripts)
* [Decrease the size of AlphaPulldown output](#decrease-the-size-of-alphapulldown-output)
* [Convert Models from PDB Format to ModelCIF Format](#convert-models-from-pdb-format-to-modelcif-format)
* [1. Convert all models to separate ModelCIF files](#1-convert-all-models-to-separate-modelcif-files)
* [2. Only convert a specific single model for each complex](#2-only-convert-a-specific-single-model-for-each-complex)
* [3. Have a representative model and keep associated models](#3-have-a-representative-model-and-keep-associated-models)
* [Associated Zip Archives](#associated-zip-archives)
* [Miscellaneous Options](#miscellaneous-options)
<!-- TOC -->
<!-- TOC start (generated with https://github.com/derlin/bitdowntoc) -->

- [AlphaPulldown: Version 2.0.0 (Beta)](#alphapulldown-version-200-beta)
* [Table of Contents](#table-of-contents)
- [About AlphaPulldown](#about-alphapulldown)
* [Overview](#overview)
- [Alphafold databases](#alphafold-databases)
- [Snakemake AlphaPulldown ](#snakemake-alphapulldown)
* [1. Installation](#1-installation)
* [2. Configuration](#2-configuration)
* [3. Execution](#3-execution)
- [Run AlphaPulldown Python Command Line Interface](#run-alphapulldown-python-command-line-interface)
* [0. Installation](#0-installation)
+ [0.1. Create Anaconda environment](#01-create-anaconda-environment)
+ [0.2. Installation using pip](#02-installation-using-pip)
+ [0.3. Installation for the Downstream analysis tools](#03-installation-for-the-downstream-analysis-tools)
+ [0.4. Installation for cross-link input data by AlphaLink2 (optional!)](#04-installation-for-cross-link-input-data-by-alphalink2-optional)
+ [0.5. Installation for developers](#05-installation-for-developers)
* [1. Compute multiple sequence alignment (MSA) and template features (CPU stage)](#1-compute-multiple-sequence-alignment-msa-and-template-features-cpu-stage)
+ [1.1. Basic run](#11-basic-run)
- [Input](#input)
- [Script Execution](#script-execution)
- [Output](#output)
- [Next step](#next-step)
+ [1.2. Example bash scripts for SLURM (EMBL cluster)](#12-example-bash-scripts-for-slurm-embl-cluster)
- [Input](#input-1)
- [Script Execution](#script-execution-1)
- [Next step](#next-step-1)
+ [1.3. Run using MMseqs2 and ColabFold Databases (Faster)](#13-run-using-mmseqs2-and-colabfold-databases-faster)
- [Run MMseqs2 Remotely](#run-mmseqs2-remotely)
- [Output](#output-1)
- [Run MMseqs2 Locally](#run-mmseqs2-locally)
- [Next step](#next-step-2)
+ [1.4. Run with custom templates (TrueMultimer)](#14-run-with-custom-templates-truemultimer)
- [Input](#input-2)
- [Script Execution](#script-execution-2)
- [Output](#output-2)
- [Next step](#next-step-3)
* [2. Predict structures (GPU stage)](#2-predict-structures-gpu-stage)
+ [2.1. Basic run](#21-basic-run)
- [Input](#input-3)
- [Script Execution: Structure Prediction](#script-execution-structure-prediction)
- [Output](#output-3)
- [Next step](#next-step-4)
+ [2.2. Example run with SLURM (EMBL cluster)](#22-example-run-with-slurm-embl-cluster)
- [Input](#input-4)
- [Script Execution](#script-execution-3)
- [Output and the next step](#output-and-the-next-step)
+ [2.3. Pulldown mode](#23-pulldown-mode)
- [Multiple inputs "pulldown" mode](#multiple-inputs-pulldown-mode)
+ [2.4. All versus All mode](#24-all-versus-all-mode)
- [Output and the next step](#output-and-the-next-step-1)
+ [2.5. Run with Custom Templates (TrueMultimer)](#25-run-with-custom-templates-truemultimer)
- [Input](#input-5)
- [Script Execution for TrueMultimer Structure Prediction](#script-execution-for-truemultimer-structure-prediction)
- [Output and the next step](#output-and-the-next-step-2)
+ [2.6. Run with crosslinking-data (AlphaLink2)](#26-run-with-crosslinking-data-alphalink2)
- [Input](#input-6)
- [Run with AlphaLink2 prediction via AlphaPulldown](#run-with-alphalink2-prediction-via-alphapulldown)
- [Output and the next step](#output-and-the-next-step-3)
* [3. Analysis and Visualization](#3-analysis-and-visualization)
+ [Create Jupyter Notebook](#create-jupyter-notebook)
- [Next step](#next-step-5)
+ [Create Results table](#create-results-table)
- [Next step](#next-step-6)
- [Downstream analysis](#downstream-analysis)
* [Jupyter notebook](#jupyter-notebook)
* [Results table ](#results-table)
* [Results management scripts](#results-management-scripts)
+ [Decrease the size of AlphaPulldown output](#decrease-the-size-of-alphapulldown-output)
+ [Convert Models from PDB Format to ModelCIF Format](#convert-models-from-pdb-format-to-modelcif-format)
- [1. Convert all models to separate ModelCIF files](#1-convert-all-models-to-separate-modelcif-files)
- [2. Only convert a specific single model for each complex](#2-only-convert-a-specific-single-model-for-each-complex)
- [3. Have a representative model and keep associated models](#3-have-a-representative-model-and-keep-associated-models)
- [Associated Zip Archives](#associated-zip-archives)
- [Miscellaneous Options](#miscellaneous-options)
- [Features Database](#features-database)
* [Installation](#installation)
+ [Steps:](#steps)
+ [Verify installation:](#verify-installation)
* [Configuration](#configuration)
* [Downloading Features](#downloading-features)
+ [List available organisms:](#list-available-organisms)
+ [Download specific protein features:](#download-specific-protein-features)
+ [Download all features for an organism:](#download-all-features-for-an-organism)

<!-- TOC end -->

# About AlphaPulldown

Expand Down Expand Up @@ -435,14 +446,25 @@ pip install -U "jax[cuda12]"
### 0.3. Installation for the Downstream analysis tools

To create the Results table, you need to have [Singularity](https://apptainer.org/admin-docs/master/installation.html) installed.
**Install CCP4 package**:
To install the software needed for [the anaysis step](https://github.com/KosinskiLab/AlphaPulldown?tab=readme-ov-file#3-analysis-and-visualization), please follow these instructions:

Download the singularity image:
```bash
singularity pull docker://kosinskilab/fold_analysis:latest
singularity build --sandbox <writable_image_dir> fold_analysis_latest.sif
# Download the top one from https://www.ccp4.ac.uk/download/#os=linux
tar xvzf ccp4-9.0.003-linux64.tar.gz
cd ccp4-9
cp bin/pisa bin/sc <writable_image_dir>/software/
cp /lib/* <writable_image_dir>/software/lib64/
singularity build <new_image.sif> <writable_image_dir>
```

* If your results are from AlphaPulldown prior to version 1.0.0: [alpha-analysis_jax_0.3.sif](https://www.embl-hamburg.de/AlphaPulldown/downloads/alpha-analysis_jax_0.3.sif).
* If your results are from AlphaPulldown with version >=1.0.0: [alpha-analysis_jax_0.4.sif](https://www.embl-hamburg.de/AlphaPulldown/downloads/alpha-analysis_jax_0.4.sif).
Then open `AlphaPulldownSnakemake/config/config.yaml` in a text editor and change the path to the analysis container to:

Chrome users may not be able to download it after clicking the link. If so, please right-click and select "Save link as".
```yaml
analysis_container : "/path/to/new_image.sif"
```
### 0.4. Installation for cross-link input data by [AlphaLink2](https://github.com/Rappsilber-Laboratory/AlphaLink2/tree/main) (optional!)
Expand Down Expand Up @@ -526,6 +548,9 @@ Please [add your SSH key to your GitHub account](https://docs.github.com/en/auth

## 1. Compute multiple sequence alignment (MSA) and template features (CPU stage)

>[!Note]
>If you work with proteins from model organisms you can directly download the features files from the [AlphaPulldown Features Database](#features-database) and skip this step.

### 1.1. Basic run

This is a general example of `create_individual_features.py` usage. For information on running specific tasks or parallel execution on a cluster, please refer to the corresponding sections of this chapter.
Expand Down Expand Up @@ -982,7 +1007,7 @@ source activate AlphaPulldown
run_multimer_jobs.py \
--mode=custom \
--monomer_objects_dir=<dir that stores feature pickle files> \
--data_dir=<path to alphafold databases> \
--data_dir=<path to alphafold databases> I am running a few minutes late; my previous meeting is running over.
--protein_lists=<protein_list.txt> \
--output_path=<path to output directory> \
--num_cycle=<any number e.g. 3> \
Expand Down Expand Up @@ -1432,15 +1457,15 @@ For usage of the Jupyter Notebook, refer to the [Downstream analysis](#downstrea

### Create Results table

Making a CSV table with structural properties and scores requires the download of the singularity image `alpha-analysis.sif`. Please refer to the installation [instruction](#3-installation-for-the-downstream-analysis-step-tools).
Making a CSV table with structural properties and scores requires the download of the singularity image `fold_analysis.sif`. Please refer to the installation [instruction](#03-installation-for-the-downstream-analysis-tools).

To execute the singularity image (i.e. the sif file) run:

```bash
singularity exec \
--no-home \
--bind </path/to/output/dir/with/predictions>:/mnt \
<path to your downloaded image>/alpha-analysis_jax_0.4.sif \
<path to your downloaded image>/fold_analysis.sif \
run_get_good_pae.sh \
--output_dir=/mnt \
--cutoff=10
Expand Down

0 comments on commit 0bf86ad

Please sign in to comment.