Skip to content

🎨 数学公式识别增强版:中英文手写印刷公式、支持初级符号推导(数据结构基于 LaTeX 抽象语法树)

License

Notifications You must be signed in to change notification settings

LinnaWang76/LaTeX_OCR_PRO

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LaTeX_OCR_PRO

数学公式识别,增强:中文公式、手写公式

Seq2Seq + Attention + Beam Search。结构如下:

1. 搭建环境

  1. python3.5 + tensorflow1.12.2
  2. [可选] latex (latex 转 pdf)
  3. [可选] ghostscript (图片处理)
  4. [可选] magick (pdf 转 png)

如果你想直接训练,不想自己构建数据集:

  1. [可选] 新开一个虚拟环境
    virtualenv env35 --python=python3.5
    source env35/bin/activate
  2. 安装依赖
    pip install -r requirements.txt     // cpu 版
    pip install -r requirements-gpu.txt // gpu 版
  3. 下载数据集
    git submodule init
    git submodule update

如果你想自己构建数据集,然后再训练:

Linux

一键安装

make install-linux

  1. 安装本项目依赖
virtualenv env35 --python=python3.5
source env35/bin/activate
pip install -r requirements.txt
  1. 安装 latex (latex 转 pdf)
sudo apt-get install texlive-latex-base
sudo apt-get install texlive-latex-extra
  1. 安装 ghostscript
sudo apt-get update
sudo apt-get install ghostscript
sudo apt-get install libgs-dev
  1. 安装magick (pdf 转 png)
wget http://www.imagemagick.org/download/ImageMagick.tar.gz
tar -xvf ImageMagick.tar.gz
cd ImageMagick-7.*; \
./configure --with-gslib=yes; \
make; \
sudo make install; \
sudo ldconfig /usr/local/lib
rm ImageMagick.tar.gz
rm -r ImageMagick-7.*
Mac

一键安装

make install-mac

  1. 安装本项目依赖
sudo pip install -r requirements.txt
  1. LaTeX

我们需要 pdflatex,可以傻瓜式一键安装:http://www.tug.org/mactex/mactex-download.html

  1. 安装magick (pdf 转 png)
wget http://www.imagemagick.org/download/ImageMagick.tar.gz
tar -xvf ImageMagick.tar.gz
cd ImageMagick-7.*; \
./configure --with-gslib=yes; \
make;\
sudo make install; \
rm ImageMagick.tar.gz
rm -r ImageMagick-7.*

2. 开始训练

生成小数据集、训练、评价

提供了样本量为 100 的小数据集,方便测试。只需 2 分钟就可以根据 ./data/small.formulas/ 下的公式生成用于训练的图片。

一步训练

make small

  1. 生成数据集

    用 LaTeX 公式生成图片,同时保存公式-图片映射文件,生成字典 只用运行一次

    # 默认
    python build.py
    # 或者
    python build.py --data=configs/data_small.json --vocab=configs/vocab_small.json
  2. 训练

    # 默认
    python train.py
    # 或者
    python train.py --data=configs/data_small.json --vocab=configs/vocab_small.json --training=configs/training_small.json --model=configs/model.json --output=results/small/
    
  3. 评价预测的公式

    # 默认
    python evaluate_txt.py
    # 或者
    python evaluate_txt.py --results=results/small/
    
  4. 评价数学公式图片

    # 默认
    python evaluate_img.py
    # 或者
    python evaluate_img.py --results=results/small/
    
生成完整数据集、训练、评价

根据公式生成 70,000+ 数学公式图片需要 2-3 个小时

一步训练

make full

  1. 生成数据集

    用 LaTeX 公式生成图片,同时保存公式-图片映射文件,生成字典 只用运行一次

    python build.py --data=configs/data.json --vocab=configs/vocab.json
    
  2. 训练

    python train.py --data=configs/data.json --vocab=configs/vocab.json --training=configs/training.json --model=configs/model.json --output=results/full/
    
  3. 评价预测的公式

    python evaluate_txt.py --results=results/full/
    
  4. 评价数学公式图片

    python evaluate_img.py --results=results/full/
    

3. 可视化

可视化训练过程

用 tensorboard 可视化训练过程

小数据集

cd results/small
tensorboard --logdir ./

完整数据集

cd results/full
tensorboard --logdir ./
可视化预测过程

打开 visualize_attention.ipynb,一步步观察模型是如何预测 LaTeX 公式的。

或者运行

# 默认
python visualize_attention.py
# 或者
python visualize_attention.py --image=data/images_test/6.png --vocab=configs/vocab.json --model=configs/model.json --output=results/full/

可在 --output 下生成预测过程的注意力图。

4. 部署

部署为 Django 应用
  1. 安装部署需要的环境
    pip install django
  2. 开启服务
    python manage.py runserver 0.0.0.0:8010
  3. 开启图片服务
    cd data/images_train
    python -m SimpleHTTPServer 8020
  4. 使用方法 在输入框里依次输入 0.png, 1.png 等等,即可看到结果

5. 评价

指标 训练分数 测试分数
perplexity 1.12 1.13
EditDistance 94.16 93.36
BLEU-4 91.03 90.47
ExactMatchScore 49.30 46.22

perplexity 是越接近1越好,其余3个指标是越大越好。

其中 EditDistance 和 BLEU-4 已达到业内先进水平

将 perplexity 训练到 1.03 左右,ExactMatchScore 还可以再升,应该可以到 70 以上。

机器不太好,训练太费时间了。

6. 更多细节

  1. 模型实现细节

    包括数据获取、数据处理、模型架构、训练细节

  2. 解决方案

    包括 “如何可视化 Attention 层”、“在 win10 用 GPU 加速训练” 等等

7. 致谢

十分感谢 Harvard 和 Guillaume Genthial 、Kelvin Xu 等人提供巨人的肩膀。

论文:

  1. Show, Attend and Tell(Kelvin Xu...)
  2. Harvard's paper and dataset
  3. Seq2Seq for LaTeX generation.

About

🎨 数学公式识别增强版:中英文手写印刷公式、支持初级符号推导(数据结构基于 LaTeX 抽象语法树)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 53.2%
  • JavaScript 26.1%
  • Python 20.2%
  • Other 0.5%