Skip to content

WeightInitializers-v1.0.5

Compare
Choose a tag to compare
@github-actions github-actions released this 08 Jan 02:16
· 2 commits to main since this release
476f3f4

WeightInitializers WeightInitializers-v1.0.5

Merged pull requests:

  • Rewrite (#7) (@avik-pal)
  • Rename to Lux (#11) (@avik-pal)
  • Initial Documentation (#14) (@avik-pal)
  • Minor Updates (#15) (@avik-pal)
  • Better CUDNN Dispatches (#16) (@avik-pal)
  • Tutorials (#21) (@avik-pal)
  • Proper dispatch for types not supported by CUDNN (#23) (@avik-pal)
  • [WIP] Recurrent Neural Networks (#24) (@avik-pal)
  • Fix math display in docs (#27) (@gdalle)
  • Initial ViT Implementation & Pretrained ImageNet Models (#29) (@avik-pal)
  • CompatHelper: bump compat for Setfield to 1, (keep existing compat) (#30) (@github-actions[bot])
  • Code Formatting -- SciMLStyle (#31) (@avik-pal)
  • Cleanup generated function style (#33) (@avik-pal)
  • Update README.md (#37) (@zsz00)
  • Fix doc for PairwiseFusion (#39) (@theabhirath)
  • Extending Scale to allow for multiple dimension inputs (#40) (@theabhirath)
  • Fix Zygote error caused due to fill! (#41) (@theabhirath)
  • CompatHelper: bump compat for ComponentArrays to 0.12, (keep existing compat) (#43) (@github-actions[bot])
  • Update JET tests to allow julia v1.6 (#47) (@avik-pal)
  • Formatting updates and relax parameter type (#48) (@avik-pal)
  • Enable doctests in CI (#51) (@avik-pal)
  • fix quickstart example (#52) (@visr)
  • Test on 1.8 (#54) (@avik-pal)
  • Separate out testing unreleased julia versions (#55) (@avik-pal)
  • Cleaner and Better Documentation (#56) (@avik-pal)
  • Bump Pkg Compats (#66) (@avik-pal)
  • CompatHelper: bump compat for MLDatasets to 0.7 for package examples, (keep existing compat) (#67) (@github-actions[bot])
  • Manual to translate Flux to Lux (#69) (@avik-pal)
  • Try codecov for doctests (#70) (@avik-pal)
  • Add tests for utility functions (#74) (@avik-pal)
  • Add tip to install packages (#76) (@Karthik-d-k)
  • More Testing + Deprecate Nonsensical Functions + Better Naming for Kwargs (#80) (@avik-pal)
  • CompatHelper: add new compat entry for Optimisers at version 0.2, (keep existing compat) (#82) (@github-actions[bot])
  • Update rrules so that we can support Yota (#85) (@avik-pal)
  • CompatHelper: bump compat for FluxMPI to 0.6 for package examples, (keep existing compat) (#86) (@github-actions[bot])
  • Update comparison section in overview.md (#88) (@ToucheSir)
  • Fix typos (#89) (@claforte)
  • Fix minor typos in the docs (#93) (@gabrevaya)
  • making x Float32 in migrate from Flux example (#97) (@gabrevaya)
  • add init_hidden_state function (#101) (@gabrevaya)
  • JLArray is now registered (#103) (@YichengDWu)
  • [LuxTraining] Wrappers for less clunky training loops (#104) (@avik-pal)
  • Use OneHotArrays (#105) (@YichengDWu)
  • Fixes WeightNorm with zero Parameter bug (#106) (@avik-pal)
  • fix state update in NeuralODE example (#107) (@gabrevaya)
  • Deprecate elementwise_* and applyactivation (#113) (@avik-pal)
  • Go through the dense bias deprecation (#114) (@avik-pal)
  • Fix Scale's paramlength (#116) (@lungd)
  • Trainable hidden states (#117) (@lungd)
  • Rnn bias deprecation (#120) (@lungd)
  • Add use_bias kwarg to LSTMCell and GRUCell (#121) (@lungd)
  • Update docs for dense layer (#124) (@avik-pal)
  • Upper bound ComponentArrays (#125) (@avik-pal)
  • Relax ComponentArrays compat (#126) (@avik-pal)
  • Layer Normalization Implementation (#127) (@avik-pal)
  • LSTM docs: don't go over first element in sequence twice (#132) (@visr)
  • fix PairwiseFusion docs (#133) (@YichengDWu)
  • Generic recurrent cells (#136) (@jumerckx)
  • relu tests with finite diff is too unreliable (#137) (@avik-pal)
  • Add kaiming initialization (#138) (@YichengDWu)
  • Remove Val in typeinfo of WeightNorm (#140) (@avik-pal)
  • Named Layers inside Generic Containers (#143) (@avik-pal)
  • Allow fmapping over the model (#144) (@avik-pal)
  • Update Imagenet example (#147) (@avik-pal)
  • Make normalization more AD friendly (Diffractor) (#148) (@avik-pal)
  • Fix CuArray -> Array rrule (#149) (@avik-pal)
  • Allow indexing into Chains (#150) (@avik-pal)
  • API for freezing layers (#151) (@avik-pal)
  • Allow controlling fast activation transformation (#153) (@avik-pal)
  • Introducing LuxLib.jl: Effectively pullout some of the custom layer implementations from Lux.jl (#154) (@avik-pal)
  • Try relaxing JET version (#155) (@avik-pal)
  • Update to use LuxLib (#156) (@avik-pal)
  • Allow dispatch using Lux.apply (#158) (@avik-pal)
  • Mark non differentiable code paths (#160) (@avik-pal)
  • Fix generic GN dispatch for non 4D arrays (#161) (@avik-pal)
  • Add dispatch for subarray (#162) (@avik-pal)
  • Add More Layers (#163) (@avik-pal)
  • Fix type stability in normalization implementation (#164) (@avik-pal)
  • Codecov for lib directories Take 2 (#165) (@avik-pal)
  • Add freeze tests to runtests (#166) (@avik-pal)
  • Precompile common workflows + check invalidations (#167) (@avik-pal)
  • Make normalization typestable (#168) (@avik-pal)
  • Add a manual page on precompilation (#169) (@avik-pal)
  • Deprecate Lux.transform in favor of Flux2Lux.jl (#170) (@avik-pal)
  • Remove dead code and improve var for Tracker.jl support (#171) (@avik-pal)
  • Hyper Network Example (#172) (@avik-pal)
  • Modify mkdocs settings (#173) (@avik-pal)
  • Make ViT work on GPUs (#174) (@avik-pal)
  • Add sensible recurrent layer wrappers (#175) (@avik-pal)
  • setup only on AbstractRules (#176) (@avik-pal)
  • Start using Flux2Lux (#177) (@avik-pal)
  • Fix some displays (#178) (@avik-pal)
  • Relax dropout types (#179) (@avik-pal)
  • Add instancenorm and alpha_dropout implementations (#180) (@avik-pal)
  • Add InstanceNorm and AlphaDropout (#181) (@avik-pal)
  • CompatHelper: bump compat for MLUtils to 0.3 for package examples, (keep existing compat) (#184) (@github-actions[bot])
  • remove convert rrule (#185) (@ArnoStrouwen)
  • CompatHelper: bump compat for OneHotArrays to 0.2 for package examples, (keep existing compat) (#186) (@github-actions[bot])
  • CompatHelper: bump compat for Turing to 0.22 for package examples, (keep existing compat) (#188) (@github-actions[bot])
  • Fix layer_map for custom layers (#189) (@avik-pal)
  • add example of DDIM implementation (#190) (@yng87)
  • LuxCore.jl: Extremely light dependency for Lux Compatibility (#191) (@avik-pal)
  • Revert github workflows for merged LuxCore.jl (#193) (@avik-pal)
  • CompatHelper: bump compat for MLUtils to 0.3 for package ImageNet, (keep existing compat) (#194) (@github-actions[bot])
  • CompatHelper: bump compat for Setfield to 1 for package ImageNet, (keep existing compat) (#195) (@github-actions[bot])
  • CompatHelper: bump compat for OneHotArrays to 0.2 for package ImageNet, (keep existing compat) (#196) (@github-actions[bot])
  • ADAM -> Adam (#197) (@cossio)
  • CompatHelper: bump compat for Functors to 0.4, (keep existing compat) (#199) (@github-actions[bot])
  • CompatHelper: bump compat for Functors to 0.4 for package examples, (keep existing compat) (#200) (@github-actions[bot])
  • CompatHelper: bump compat for Functors to 0.4 for package ImageNet, (keep existing compat) (#201) (@github-actions[bot])
  • Add easy tied weights/parameter sharing support (#202) (@avik-pal)
  • CompatHelper: bump compat for Functors to 0.4 for package LuxCore, (keep existing compat) (#203) (@github-actions[bot])
  • CompatHelper: add new compat entry for Zygote at version 0.6 for package DDIM, (keep existing compat) (#218) (@github-actions[bot])
  • Update DDIM compat requirements (#219) (@avik-pal)
  • Update examples (#221) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.23 for package examples, (keep existing compat) (#222) (@github-actions[bot])
  • Fix docs (#223) (@avik-pal)
  • CompatHelper: bump compat for MLUtils to 0.4 for package examples, (keep existing compat) (#226) (@github-actions[bot])
  • CompatHelper: bump compat for MLUtils to 0.4 for package ImageNet, (keep existing compat) (#227) (@github-actions[bot])
  • CompatHelper: bump compat for MLUtils to 0.4 for package DDIM, (keep existing compat) (#228) (@github-actions[bot])
  • Functor ambiguity fix (#229) (@avik-pal)
  • Add all compats together (#238) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.24 for package examples, (keep existing compat) (#241) (@github-actions[bot])
  • CompatHelper: bump compat for JET to 0.7 for package test, (keep existing compat) (#251) (@github-actions[bot])
  • [WIP] Use Extensions for Flux2Lux (#261) (@avik-pal)
  • Cleaner test workflow (#262) (@avik-pal)
  • Add a patch for #243 (#263) (@avik-pal)
  • Update LuxLib dependencies (#265) (@avik-pal)
  • Dropping Julia 1.6 support for Lux (#266) (@avik-pal)
  • Purge unnecessary dependencies into weak dependencies (#267) (@avik-pal)
  • Add ForwardDiff Extension: Dropout (#269) (@avik-pal)
  • Add Tracker as an Extension (#272) (@avik-pal)
  • CompatHelper: bump compat for AbstractDifferentiation to 0.5 for package examples, (keep existing compat) (#273) (@github-actions[bot])
  • Some Improvements (#274) (@avik-pal)
  • Tracker has some of the rules (#275) (@avik-pal)
  • Temporary CA + Tracker Patches (#276) (@avik-pal)
  • Add CUDA and AMDGPU trigger packages (#277) (@avik-pal)
  • ReverseDiff Extension (#280) (@avik-pal)
  • Bump peter-evans/create-pull-request from 3 to 4 (#283) (@dependabot[bot])
  • Bump actions/cache from 1 to 3 (#284) (@dependabot[bot])
  • Bump actions/checkout from 1 to 3 (#285) (@dependabot[bot])
  • Return the history for Recurrence (#287) (@avik-pal)
  • Truncate tuples and namedtuples (#290) (@avik-pal)
  • [WIP] Remove projects from lib to LuxDL (#291) (@avik-pal)
  • Patch freeze (#292) (@avik-pal)
  • Add dispatch for no activation (#293) (@avik-pal)
  • Remove weakdeps from deps (#295) (@avik-pal)
  • Try restoring lts support (#296) (@avik-pal)
  • Testing using LuxTestUtils.jl (#297) (@avik-pal)
  • CompatHelper: bump compat for Boltz to 0.2 for package ImageNet, (kee… (#298) (@avik-pal)
  • Bump peter-evans/create-pull-request from 4 to 5 (#299) (@dependabot[bot])
  • remove Dataloaders (#300) (@avik-pal)
  • Update docs (#301) (@avik-pal)
  • Fix bug in recurrence ordering (#303) (@avik-pal)
  • Update LuxComponentArraysExt.jl (#304) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.25 for package examples, (keep existing compat) (#306) (@github-actions[bot])
  • propertynames of CA from type (#307) (@avik-pal)
  • Fix GRUCell docstring (#309) (@andreuvall)
  • Fix enzyme doc to reflect custom rules (#310) (@wsmoses)
  • Fixed link to sciml book in NeuralODE example (#311) (@MartinuzziFrancesco)
  • Move documentation build to buildkite (#314) (@avik-pal)
  • Fixed Boltz.jl link in docs (#316) (@MartinuzziFrancesco)
  • Allow container layers to have custom names (#317) (@avik-pal)
  • Small grammar and style fixes (#318) (@MartinuzziFrancesco)
  • Added '__apply_activation' to 'RNNCell's (#319) (@MartinuzziFrancesco)
  • Added AbstractRecurrentCell (#322) (@MartinuzziFrancesco)
  • Towards v0.5 [Take II] (#323) (@avik-pal)
  • Fix errors in applying bilinear layer to ND arrays (#333) (@vpuri3)
  • Use WeightInitializers.jl (#334) (@avik-pal)
  • Use PackageExtensionCompat (#335) (@avik-pal)
  • CompatHelper: add new compat entry for LuxCUDA at version 0.1 for package ImageNet, (keep existing compat) (#337) (@github-actions[bot])
  • CompatHelper: add new compat entry for LuxAMDGPU at version 0.1 for package ImageNet, (keep existing compat) (#338) (@github-actions[bot])
  • Basic 2nd order support (#339) (@avik-pal)
  • Use LuxLib 0.3 (#340) (@avik-pal)
  • Workaround cjdoris/PackageExtensionCompat.jl#9 (#344) (@avik-pal)
  • Merge pull request #344 from LuxDL/ap/lux0.4 (#346) (@avik-pal)
  • Fixes for compat (#350) (@avik-pal)
  • Fix ext docs (#351) (@avik-pal)
  • Allow modifying ordering of data for recurrence (#353) (@avik-pal)
  • CompatHelper: bump compat for ComponentArrays to 0.14 for package examples, (keep existing compat) (#355) (@github-actions[bot])
  • Fix AMDGPU tests and versions (#356) (@avik-pal)
  • Clean up the codebase (#357) (@avik-pal)
  • Add example on how to save the models (#358) (@avik-pal)
  • DOCFIX: LayerNorm's affine default value was incorrectly noted as 'false' in doc. (#359) (@srikumarks)
  • CompatHelper: bump compat for Lux to 0.5 for package ImageNet, (keep existing compat) (#362) (@github-actions[bot])
  • CompatHelper: bump compat for Lux to 0.5 for package DDIM, (keep existing compat) (#363) (@github-actions[bot])
  • CompatHelper: bump compat for Images to 0.26 for package ImageNet, (keep existing compat) (#365) (@github-actions[bot])
  • CompatHelper: bump compat for Images to 0.26 for package DDIM, (keep existing compat) (#366) (@github-actions[bot])
  • Fix url link to Deep learning with Flux tutorial (#367) (@pnavaro)
  • CompatHelper: bump compat for Turing to 0.27 for package examples, (keep existing compat) (#368) (@github-actions[bot])
  • CompatHelper: bump compat for Turing to 0.28 for package examples, (keep existing compat) (#372) (@github-actions[bot])
  • Boltz Link was not working, updated (#373) (@ashwanirathee)
  • Formatting fix (#379) (@avik-pal)
  • CompatHelper: bump compat for ADTypes to 0.2, (keep existing compat) (#380) (@github-actions[bot])
  • Move experimental code to Experimental (#381) (@avik-pal)
  • CompatHelper: bump compat for Boltz to 0.3 for package ImageNet, (keep existing compat) (#382) (@github-actions[bot])
  • Migrate Docs to using Vitepress (#383) (@avik-pal)
  • Add Potential CUDA Grouped Conv segfault test (#388) (@avik-pal)
  • Add Tutorial on modeling gravitational waveforms (#389) (@avik-pal)
  • CompatHelper: bump compat for Optimisers to 0.3, (keep existing compat) (#390) (@github-actions[bot])
  • CompatHelper: add new compat entry for CSV at version 0.10 for package examples, (keep existing compat) (#391) (@github-actions[bot])
  • CompatHelper: add new compat entry for Optimization at version 3 for package examples, (keep existing compat) (#392) (@github-actions[bot])
  • CompatHelper: bump compat for Optimisers to 0.3 for package examples, (keep existing compat) (#393) (@github-actions[bot])
  • CompatHelper: add new compat entry for LineSearches at version 7 for package examples, (keep existing compat) (#394) (@github-actions[bot])
  • CompatHelper: add new compat entry for OptimizationOptimJL at version 0.1 for package examples, (keep existing compat) (#395) (@github-actions[bot])
  • CompatHelper: bump compat for Optimisers to 0.3 for package ImageNet, (keep existing compat) (#396) (@github-actions[bot])
  • CompatHelper: bump compat for Optimisers to 0.3 for package DDIM, (keep existing compat) (#397) (@github-actions[bot])
  • Restructure for autosidebar (#398) (@avik-pal)
  • Use separate Project and Manifest files (#399) (@avik-pal)
  • Use separate processes to generate the tutorials (#400) (@avik-pal)
  • Add f16, f32, f64 functions for easy parameter eltype conversions (#401) (@avik-pal)
  • Add a @debug_mode for debugging NaNs and Errors (#402) (@avik-pal)
  • Add a stateful layer which prevents boxing in SciML Layers (#404) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.29 for package BayesianNN, (keep existing compat) (#405) (@github-actions[bot])
  • CompatHelper: bump compat for ComponentArrays to 0.15 for package Basics, (keep existing compat) (#408) (@github-actions[bot])
  • CompatHelper: bump compat for ComponentArrays to 0.15 for package GravitationalWaveForm, (keep existing compat) (#409) (@github-actions[bot])
  • CompatHelper: bump compat for ComponentArrays to 0.15 for package HyperNet, (keep existing compat) (#410) (@github-actions[bot])
  • CompatHelper: bump compat for ComponentArrays to 0.15 for package NeuralODE, (keep existing compat) (#411) (@github-actions[bot])
  • Bump actions/checkout from 3 to 4 (#412) (@dependabot[bot])
  • Change Mean to Max Pooling layer in docstring [skip ci] (#413) (@roflmaostc)
  • Upstream CA patches for AD Packages (#414) (@avik-pal)
  • docs: fix the ecosystem link (#419) (@sathvikbhagavan)
  • GPU Downstream testing (#421) (@avik-pal)
  • Neural PDE downstream (#422) (@avik-pal)
  • Minor Fixes (#425) (@avik-pal)
  • Ensure ReverseDiff and Gauss Adjoint is also tested (#431) (@avik-pal)
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package DDIM, (keep existing compat) (#433) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package GravitationalWaveForm, (keep existing compat) (#434) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package HyperNet, (keep existing compat) (#435) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package ImageNet, (keep existing compat) (#436) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package NeuralODE, (keep existing compat) (#437) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package PolynomialFitting, (keep existing compat) (#438) (@github-actions[bot])
  • CompatHelper: bump compat for LuxAMDGPU to 0.2 for package SimpleRNN, (keep existing compat) (#439) (@github-actions[bot])
  • Update Project.toml (#440) (@avik-pal)
  • Emergency patch the ChainRules bug for Vector of CuArrays (#442) (@avik-pal)
  • CompatHelper: add new compat entry for Statistics at version 1, (keep existing compat) (#443) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package DDIM, (keep existing compat) (#444) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package HyperNet, (keep existing compat) (#445) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package ImageNet, (keep existing compat) (#446) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package NeuralODE, (keep existing compat) (#447) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package PolynomialFitting, (keep existing compat) (#448) (@github-actions[bot])
  • CompatHelper: add new compat entry for Statistics at version 1 for package SimpleRNN, (keep existing compat) (#449) (@github-actions[bot])
  • Add perdiodic padding to documentation (#452) (@maximilian-gelbrecht)
  • Fix link to documentation in README.md (#454) (@pierre-haessig)
  • Add CA test for Nested AutoDiff (#458) (@avik-pal)
  • CompatHelper: bump compat for CairoMakie to 0.11 for package BayesianNN, (keep existing compat) (#459) (@github-actions[bot])
  • CompatHelper: bump compat for CairoMakie to 0.11 for package GravitationalWaveForm, (keep existing compat) (#460) (@github-actions[bot])
  • CompatHelper: bump compat for CairoMakie to 0.11 for package PolynomialFitting, (keep existing compat) (#461) (@github-actions[bot])
  • Update WeightInitializers documentation (#465) (@avik-pal)
  • Allow dispatch on compact layers and use let blocks for faster closures (#466) (@avik-pal)
  • Add a RepeatedLayer (#467) (@avik-pal)
  • Fix check (#469) (@avik-pal)
  • CompatHelper: bump compat for Adapt to 4, (keep existing compat) (#470) (@github-actions[bot])
  • Patch Metal Recurrent Neural Networks (#474) (@avik-pal)
  • Bump actions/cache from 3 to 4 (#479) (@dependabot[bot])
  • Bump codecov/codecov-action from 3 to 4 (#484) (@dependabot[bot])
  • Bump peter-evans/create-pull-request from 5 to 6 (#485) (@dependabot[bot])
  • Drop 1.6 support + Patches to Fix Tests (#487) (@avik-pal)
  • Remove extensions in favor of GPUArraysCore (#488) (@avik-pal)
  • Parallel Testing + Distributed Docs build (#490) (@avik-pal)
  • Add output lengths for layers (#491) (@SebastianM-C)
  • Format code (#493) (@avik-pal)
  • Try using DocumenterVitepress.jl (#496) (@avik-pal)
  • Move Stateful lux layer out of experimental (#497) (@avik-pal)
  • Inbuilt-Distributed Setup (#500) (@avik-pal)
  • Remove ComponentArrays type-piracies (#501) (@avik-pal)
  • Add outputsize for Chain (#503) (@SebastianM-C)
  • fixes ImageNet, SimpleRNN examples (#504) (@avik-pal)
  • Documentation Fixes (#505) (@avik-pal)
  • Fix tutorial numbering (#509) (@avik-pal)
  • CompatHelper: add new compat entry for LuxAMDGPU at version 0.2 for package Basics, (keep existing compat) (#510) (@github-actions[bot])
  • CompatHelper: add new compat entry for Metalhead at version 0.9 for package ImageNet, (keep existing compat) (#511) (@github-actions[bot])
  • CompatHelper: add new compat entry for Flux at version 0.14 for package ImageNet, (keep existing compat) (#512) (@github-actions[bot])
  • Patches (#519) (@avik-pal)
  • Docs Again (#520) (@avik-pal)
  • General Quality of Life Enhancements (#521) (@avik-pal)
  • CompatHelper: add new compat entry for Literate at version 2 for package Basics, (keep existing compat) (#522) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package BayesianNN, (keep existing compat) (#523) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package GravitationalWaveForm, (keep existing compat) (#524) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package HyperNet, (keep existing compat) (#525) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package NeuralODE, (keep existing compat) (#526) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package PolynomialFitting, (keep existing compat) (#527) (@github-actions[bot])
  • CompatHelper: add new compat entry for Literate at version 2 for package SimpleRNN, (keep existing compat) (#528) (@github-actions[bot])
  • New Interface to switch between frameworks (#529) (@avik-pal)
  • CompatHelper: add new compat entry for MLUtils at version 0.4 for package SimpleChains, (keep existing compat) (#530) (@github-actions[bot])
  • Move replicate to LuxCore (#532) (@MartinuzziFrancesco)
  • Test for implicit imports (#533) (@avik-pal)
  • Fix #534 (#535) (@avik-pal)
  • Fix Dense documentation (#539) (@Sleort)
  • Fix typo: l to layer (#546) (@prbzrg)
  • Minor fixes (#547) (@avik-pal)
  • QoL improvements for tracing based AD (#548) (@avik-pal)
  • Fix SimpleChains for single dims (#552) (@avik-pal)
  • Standardize the handling of states (#553) (@avik-pal)
  • CompatHelper: add new compat entry for ADTypes at version 0.2 for package HyperNet, (keep existing compat) (#555) (@github-actions[bot])
  • CompatHelper: add new compat entry for ADTypes at version 0.2 for package PolynomialFitting, (keep existing compat) (#556) (@github-actions[bot])
  • CompatHelper: add new compat entry for ADTypes at version 0.2 for package SimpleChains, (keep existing compat) (#557) (@github-actions[bot])
  • LuxSimpleChainsExt: specify rng when initializing (#559) (@pao)
  • Update SimpleRNN docs (#561) (@avik-pal)
  • Remove TruncatedStacktraces (#562) (@avik-pal)
  • Use @closure to make closures type-stable (#563) (@avik-pal)
  • Add set_device! to docs (#569) (@avik-pal)
  • Fuse the activation and bias (#570) (@avik-pal)
  • Try fixing the hydration error (#571) (@avik-pal)
  • Test continuous benchmarking (#572) (@avik-pal)
  • Add more benchmarks (#574) (@avik-pal)
  • More Continuous Benchmarks (#575) (@avik-pal)
  • Make the AD benchmarks type stable (#576) (@avik-pal)
  • Bump julia-actions/setup-julia from 1 to 2 (#577) (@dependabot[bot])
  • Fix numbering in the docs (#578) (@avik-pal)
  • Add a gallery component (#579) (@avik-pal)
  • AD Housekeeping (#580) (@avik-pal)
  • Update style.css to disable 'calt' feature for monospace (#581) (@cormullion)
  • Improvement to the @compact API (#584) (@avik-pal)
  • Add dynamic expressions extension (#585) (@avik-pal)
  • Convert examples to doctests (#586) (@avik-pal)
  • Bump crate-ci/typos from 1.18.0 to 1.20.8 (#587) (@dependabot[bot])
  • CompatHelper: add new compat entry for Lux at version 0.5 for package SymbolicOptimalControl, (keep existing compat) (#589) (@github-actions[bot])
  • Allow @set! for Stateful Layers (#590) (@avik-pal)
  • Used New Fused Ops from LuxLib (#591) (@avik-pal)
  • CompatHelper: bump compat for ADTypes to 1, (keep existing compat) (#592) (@github-actions[bot])
  • CompatHelper: bump compat for ADTypes to 1 for package HyperNet, (keep existing compat) (#593) (@github-actions[bot])
  • CompatHelper: bump compat for ADTypes to 1 for package PolynomialFitting, (keep existing compat) (#594) (@github-actions[bot])
  • CompatHelper: bump compat for ADTypes to 1 for package SimpleChains, (keep existing compat) (#595) (@github-actions[bot])
  • CompatHelper: bump compat for ADTypes to 1 for package SimpleRNN, (keep existing compat) (#596) (@github-actions[bot])
  • Bump crate-ci/typos from 1.20.8 to 1.20.9 (#597) (@dependabot[bot])
  • Native Nested AD support for Lux Models (#598) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.31 for package BayesianNN, (keep existing compat) (#599) (@github-actions[bot])
  • Faster testing (#601) (@avik-pal)
  • Unstructure structured inputs for reasonable broadcasting (#603) (@avik-pal)
  • Bump crate-ci/typos from 1.20.9 to 1.20.10 (#607) (@dependabot[bot])
  • Add 3rd party tutorial (#609) (@agdestein)
  • CompatHelper: bump compat for DynamicExpressions to 0.17 for package SymbolicOptimalControl, (keep existing compat) (#611) (@github-actions[bot])
  • Improvements to Nested AD (#612) (@avik-pal)
  • Add missing table of contents entry (#613) (@agdestein)
  • Attempt to build the tutorials in parallel (#616) (@avik-pal)
  • Add field access syntax to Chain (#619) (@Sleort)
  • Add vector_jacobian_product and jacobian_vector_product functions (#623) (@avik-pal)
  • Bump crate-ci/typos from 1.20.10 to 1.21.0 (#624) (@dependabot[bot])
  • Bring in batched_jacobian (#625) (@avik-pal)
  • Added layer for periodic inputs (#626) (@nicholaskl97)
  • Cleanup (#629) (@avik-pal)
  • CompatHelper: bump compat for CairoMakie to 0.12 for package BayesianNN, (keep existing compat) (#631) (@github-actions[bot])
  • CompatHelper: bump compat for CairoMakie to 0.12 for package GravitationalWaveForm, (keep existing compat) (#632) (@github-actions[bot])
  • CompatHelper: bump compat for CairoMakie to 0.12 for package PolynomialFitting, (keep existing compat) (#633) (@github-actions[bot])
  • CompatHelper: bump compat for CairoMakie to 0.12 for package SymbolicOptimalControl, (keep existing compat) (#634) (@github-actions[bot])
  • Fixes to type stability of Zygote (#635) (@avik-pal)
  • Reduce max chunksize (#637) (@avik-pal)
  • missing keyword in docstring (#638) (@RoyCCWang)
  • Adding Enzyme Tests (#639) (@avik-pal)
  • Enzyme Testing + Caching in compute_gradients (#640) (@avik-pal)
  • Add Enzyme to benchmark infra (#641) (@wsmoses)
  • Add Enzyme to benchmark infra (#643) (@avik-pal)
  • Add a warning on using Tracker with SimpleChains (#645) (@avik-pal)
  • Improvements to Batched Jacobian (#646) (@avik-pal)
  • Patch a compact bug (#648) (@avik-pal)
  • update makie (#649) (@avik-pal)
  • Test on multiple os (#650) (@avik-pal)
  • Fix DocumenterVitepress compat (#651) (@avik-pal)
  • Prevent infinite loop in Tracker (#652) (@avik-pal)
  • Test ComponentArrays with Enzyme (#653) (@avik-pal)
  • Update DocumenterVitepress compat in docs (#654) (@asinghvi17)
  • Use ArgCheck.jl for helpful error messages (#655) (@avik-pal)
  • CompatHelper: bump compat for OptimizationOptimJL to 0.3 for package GravitationalWaveForm, (keep existing compat) (#656) (@github-actions[bot])
  • CompatHelper: bump compat for OptimizationOptimJL to 0.3 for package SymbolicOptimalControl, (keep existing compat) (#657) (@github-actions[bot])
  • CompatHelper: bump compat for Turing to 0.32 for package BayesianNN, (keep existing compat) (#658) (@github-actions[bot])
  • Restore the rrule for merge (#659) (@avik-pal)
  • Bump julia-actions/julia-format from 2 to 3 (#660) (@dependabot[bot])
  • Update & Rewrite the DDIM example (#661) (@avik-pal)
  • Quality of Life Improvements (#666) (@avik-pal)
  • CompatHelper: bump compat for SymbolicUtils to 2 for package SymbolicOptimalControl, (keep existing compat) (#669) (@github-actions[bot])
  • Add Cartesian Embedding methods (#670) (@ldeso)
  • More principled rewrite of layer_map (#671) (@avik-pal)
  • Clean up the code for debug mode (#674) (@avik-pal)
  • CompatHelper: add new compat entry for TensorBoardLogger at version 0.1 for package DDIM, (keep existing compat) (#676) (@github-actions[bot])
  • CompatHelper: add new compat entry for CairoMakie at version 0.12 for package DDIM, (keep existing compat) (#677) (@github-actions[bot])
  • Remove rrule for merge (#679) (@avik-pal)
  • Minor optimizations (#681) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.33 for package BayesianNN, (keep existing compat) (#688) (@github-actions[bot])
  • Newer public functions (#690) (@avik-pal)
  • Update Boltz API Docs (#691) (@avik-pal)
  • Bump crate-ci/typos from 1.21.0 to 1.22.3 (#693) (@dependabot[bot])
  • More API updates (#696) (@avik-pal)
  • Add ReverseSequence (#698) (@NeroBlackstone)
  • Training ConvMixer on CIFAR10 in 10mins (#700) (@avik-pal)
  • Add activation functions doc reference (Rebase #694) (#702) (@avik-pal)
  • Clean up the CI scripts (#703) (@avik-pal)
  • Loss functions module (#704) (@avik-pal)
  • Add test guide documentation (#705) (@NeroBlackstone)
  • Add ReverseSequence() docs (#706) (@NeroBlackstone)
  • Bidirectional RNN (#708) (@NeroBlackstone)
  • Run doctests in the test CI + Lazy install test dependencies (#710) (@avik-pal)
  • Bump crate-ci/typos from 1.22.3 to 1.22.7 (#711) (@dependabot[bot])
  • Mark unexported symbols as public (#712) (@avik-pal)
  • Install packages before loading (#713) (@avik-pal)
  • Extend training API and update examples (#714) (@avik-pal)
  • Try fixing AMDGPU test stalling (#716) (@avik-pal)
  • CompatHelper: bump compat for AMDGPU in [weakdeps] to 0.9, (keep existing compat) (#717) (@github-actions[bot])
  • Try to improve coverage (#718) (@avik-pal)
  • Try wider docs (#721) (@avik-pal)
  • Compiled ReverseDiff for training on CPU (#722) (@avik-pal)
  • Makes name concrete types (#723) (@avik-pal)
  • CompatHelper: add new compat entry for StaticArrays at version 1 for package docs, (keep existing compat) (#724) (@github-actions[bot])
  • CompatHelper: add new compat entry for KernelAbstractions at version 0.9 for package docs, (keep existing compat) (#725) (@github-actions[bot])
  • Bump crate-ci/typos from 1.22.7 to 1.22.9 (#726) (@dependabot[bot])
  • Performance Pitfalls and How to Catch them (#727) (@avik-pal)
  • CompatHelper: bump compat for DynamicExpressions in [weakdeps] to 0.18, (keep existing compat) (#728) (@github-actions[bot])
  • CompatHelper: bump compat for DynamicExpressions to 0.18 for package SymbolicOptimalControl, (keep existing compat) (#729) (@github-actions[bot])
  • Store the optimizer in TrainState (#731) (@avik-pal)
  • Simply show implementations and make them round-trippable (#732) (@avik-pal)
  • Try removing the type assert with this (#734) (@avik-pal)
  • Add enzyme support for loss functions from LossFunctions.jl (#736) (@avik-pal)
  • Mark cartersian index tests on cuda broken for now (#737) (@avik-pal)
  • Run CI on pre (#739) (@avik-pal)
  • Revert bee2de7-1188db7 (#740) (@avik-pal)
  • Use shorthand syntax of @concrete (#741) (@avik-pal)
  • Check status of broken tests (#742) (@avik-pal)
  • Aggregate changes for v1 (#744) (@avik-pal)
  • fix: nested ad when using direct eval in function (#745) (@avik-pal)
  • CompatHelper: add new compat entry for GPUArraysCore at version 0.1 for package docs, (keep existing compat) (#746) (@github-actions[bot])
  • Bump crate-ci/typos from 1.22.9 to 1.23.1 (#748) (@dependabot[bot])
  • chore: bump simplechains version (#749) (@avik-pal)
  • CompatHelper: bump compat for SciMLSensitivity to 7 for package NeuralODE, (keep existing compat) (#750) (@github-actions[bot])
  • docs: restructure the manual entries a bit (#751) (@avik-pal)
  • refactor: bring Optimisers.jl into main deps (#754) (@avik-pal)
  • refactor: drop the AMDGPU extension (#755) (@avik-pal)
  • rearrange code in extensions (#756) (@avik-pal)
  • fix: use proper qualified accesses for modules (#757) (@avik-pal)
  • docs: remove redundant old preferences (#759) (@avik-pal)
  • feat: allow multiple @return (#760) (@avik-pal)
  • Making all eltypes Float32 in Fitting a Polynomial using MLP (#761) (@Sleort)
  • docs: fix inline math rendering (#762) (@avik-pal)
  • refactor: use the faster get_device_type (#763) (@avik-pal)
  • refactor: move ForwardDiff.jl into main deps (#764) (@avik-pal)
  • test: set st to training (#765) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.23.1 to 1.23.2 (#766) (@dependabot[bot])
  • Update docstring dropout (#770) (@dmetivie)
  • chore: recommend GH Discussions for Q/A (#774) (@avik-pal)
  • Allow 2d input if RNN order is BatchLastIndex (#778) (@NeroBlackstone)
  • test: remove @test_nowarn testing (#781) (@avik-pal)
  • fix: don't reuse pullback for safety (#782) (@avik-pal)
  • improvements to compact macro (#783) (@avik-pal)
  • test: warp @inferred with @test (#784) (@avik-pal)
  • chore: add NNlib as a direct dep (#785) (@avik-pal)
  • fix: update to latest LuxLib API + deprecations (#786) (@avik-pal)
  • perf: fix enzyme benchmarks (#787) (@avik-pal)
  • test: trigger enzyme tests (#788) (@avik-pal)
  • docs: fix typo in "JVP & VJP Wrappers" (#789) (@ldeso)
  • docs: update docs from downstream changes (#790) (@avik-pal)
  • CompatHelper: bump compat for WeightInitializers to 1, (keep existing compat) (#791) (@github-actions[bot])
  • CompatHelper: bump compat for WeightInitializers to 1 for package docs, (keep existing compat) (#792) (@github-actions[bot])
  • test: improved testing (#793) (@avik-pal)
  • feat: improvements to the Training API (#794) (@avik-pal)
  • feat: easy mechanism to set preferences (#798) (@avik-pal)
  • CompatHelper: bump compat for SymbolicUtils to 3 for package SymbolicOptimalControl, (keep existing compat) (#799) (@github-actions[bot])
  • test: update to the newer LuxTestUtils (#800) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.23.2 to 1.23.5 (#804) (@dependabot[bot])
  • refactor: move TrackerExt in a directory (#806) (@avik-pal)
  • feat: NilArray for fast size propagation (#811) (@avik-pal)
  • docs: add new function to docs (#813) (@avik-pal)
  • fix: update Dynamic Expressions to 0.19 (#814) (@avik-pal)
  • docs: add documentation for MLDataDevices (#815) (@avik-pal)
  • CompatHelper: add new compat entry for MLDataDevices at version 1 for package docs, (keep existing compat) (#818) (@github-actions[bot])
  • test: try separating the test Project files (#819) (@avik-pal)
  • feat: use faster version of batched matmul (#820) (@avik-pal)
  • ci: setup benchmarking CI (#821) (@avik-pal)
  • ci: add CI to benchmark load times (#822) (@avik-pal)
  • chore(deps): bump actions/checkout from 2 to 4 (#823) (@dependabot[bot])
  • chore(deps): bump peter-evans/create-or-update-comment from 3 to 4 (#824) (@dependabot[bot])
  • chore(deps): bump julia-actions/setup-julia from 1 to 2 (#825) (@dependabot[bot])
  • chore(deps): bump peter-evans/find-comment from 2 to 3 (#826) (@dependabot[bot])
  • chore(deps): bump julia-actions/cache from 1 to 2 (#827) (@dependabot[bot])
  • fix: mark objective function as Const (#835) (@avik-pal)
  • ci: separate testing for groups in buildkite (#836) (@avik-pal)
  • chore: update all AMDGPU compats (#837) (@avik-pal)
  • test: remove Flux as a direct test dep (#838) (@avik-pal)
  • test: remove some of the unnecessary Flux tests (#839) (@avik-pal)
  • refactor: cleanup of internals (#840) (@avik-pal)
  • fix: remove type pirated functions from Lux (#843) (@avik-pal)
  • chore(deps): bump actions/upload-artifact from 2 to 4 (#844) (@dependabot[bot])
  • chore(deps): bump crate-ci/typos from 1.23.5 to 1.23.6 (#845) (@dependabot[bot])
  • CompatHelper: add new compat entry for Static at version 1 for package test, (keep existing compat) (#846) (@github-actions[bot])
  • feat: improve batched jacobian (#848) (@avik-pal)
  • chore: bump minimum LuxTestUtils version (#850) (@avik-pal)
  • docs: minor documentation changes (#855) (@avik-pal)
  • chore: marking layers as deprecated (#856) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.23.6 to 1.24.1 (#857) (@dependabot[bot])
  • docs: more details in performance pitfalls (#859) (@avik-pal)
  • fix: remove hacky usage of module getproperty rrules (#865) (@avik-pal)
  • feat: expand trainmode,testmode,update_state to support Stateful Layers (#866) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.34 for package BayesianNN, (keep existing compat) (#870) (@github-actions[bot])
  • chore(deps): bump crate-ci/typos from 1.24.1 to 1.24.3 (#871) (@dependabot[bot])
  • test: don't run doctests on pre-releases (#873) (@avik-pal)
  • test: run with DD error mode (#874) (@avik-pal)
  • refactor: static fields in layers (#875) (@avik-pal)
  • CompatHelper: bump compat for DataAugmentation to 0.3 for package ConvMixer, (keep existing compat) (#876) (@github-actions[bot])
  • CompatHelper: bump compat for DataAugmentation to 0.3 for package DDIM, (keep existing compat) (#877) (@github-actions[bot])
  • ci(buildkite): run some of the tutorials on CPU runners (#879) (@avik-pal)
  • CompatHelper: add new compat entry for StableRNGs at version 1 for package docs, (keep existing compat) (#881) (@github-actions[bot])
  • CompatHelper: bump compat for JLD2 to 0.5 for package DDIM, (keep existing compat) (#885) (@github-actions[bot])
  • CompatHelper: bump compat for JLD2 to 0.5 for package ImageNet, (keep existing compat) (#886) (@github-actions[bot])
  • CompatHelper: bump compat for JLD2 to 0.5 for package SimpleRNN, (keep existing compat) (#887) (@github-actions[bot])
  • chore(deps): bump peter-evans/create-pull-request from 6 to 7 (#888) (@dependabot[bot])
  • chore(deps): bump crate-ci/typos from 1.24.3 to 1.24.5 (#889) (@dependabot[bot])
  • Fixed updating_to_v1 link in README.md (#890) (@MartinuzziFrancesco)
  • fix: pretty printing of MaxPool Layer (#891) (@avik-pal)
  • docs: add a PINN tutorial with nested AD (#894) (@avik-pal)
  • fix: remove UnrolledUtilities dep (#895) (@avik-pal)
  • refactor: cleanup Training and preserve type-stability in Enzyme (#896) (@avik-pal)
  • docs: add an Optimization.jl tutorial showcasing lazy data movement (#897) (@avik-pal)
  • CompatHelper: add new compat entry for Literate at version 2 for package PINN2DPDE, (keep existing compat) (#899) (@github-actions[bot])
  • feat: update imagenet training script (#909) (@avik-pal)
  • docs: simplify getting started docs (#930) (@avik-pal)
  • fix: force_inline inside generated functions to avoid recursion issues (#931) (@avik-pal)
  • fix: update to use test_gradients macro (#932) (@avik-pal)
  • test: froggie tests are broken on gpu (#933) (@avik-pal)
  • fix: static vector input to dense (#936) (@avik-pal)
  • ci(buildkite): debugging CUDA segfaults on CI (#937) (@avik-pal)
  • docs: try using the new documenter vitepress (#943) (@avik-pal)
  • docs: collapse docstrings by default (#949) (@avik-pal)
  • feat: update minimum version of Enzyme (#950) (@avik-pal)
  • docs: fix version picker path (#951) (@avik-pal)
  • fix: update Optimization compats (#952) (@avik-pal)
  • fix: update GravitationalWaveform tutorial (#953) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.24.5 to 1.24.6 (#955) (@dependabot[bot])
  • docs: update README example (#956) (@avik-pal)
  • fix: patch optimization tutorial (#959) (@avik-pal)
  • Added to Nested AD example how to use batched_jacobian (#964) (@facusapienza21)
  • Remove line about "not saving the model" (#965) (@asinghvi17)
  • fix: optimization integration for gravitational waveform (#966) (@avik-pal)
  • docs: add compilation example using Reactant (#967) (@avik-pal)
  • docs: add the new xla_device (#968) (@avik-pal)
  • feat: compile training loop automatically using reactant (#969) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.24.6 to 1.25.0 (#971) (@dependabot[bot])
  • ci: run tests only on 1.10 for now (#975) (@avik-pal)
  • refactor: make LossFunctions an optional dep (#976) (@avik-pal)
  • chore(deps): bump crate-ci/typos from 1.25.0 to 1.26.0 (#978) (@dependabot[bot])
  • CompatHelper: bump compat for GPUArraysCore to 0.2, (keep existing compat) (#984) (@github-actions[bot])
  • CompatHelper: bump compat for GPUArraysCore to 0.2 for package docs, (keep existing compat) (#985) (@github-actions[bot])
  • fix: LV/Octavian moved to optional deps (#986) (@avik-pal)
  • docs(reactant): simplify the enzyme call (#987) (@avik-pal)
  • CompatHelper: bump compat for Turing to 0.35 for package BayesianNN, (keep existing compat) (#989) (@github-actions[bot])
  • chore(deps): bump crate-ci/typos from 1.26.0 to 1.26.8 (#992) (@dependabot[bot])
  • perf: load LoopVectorization and Octavian for benchmarks (#994) (@avik-pal)
  • refactor: use Lux primitives for AD (#995) (@avik-pal)
  • Move code blocks inside bullet list (#996) (@abhro)
  • Fix images.jl link (#997) (@NeroBlackstone)
  • Fix broken link in Recurrence docs (#1001) (@MartinuzziFrancesco)
  • refactor: move all subpackages into a mono-repo (#1002) (@avik-pal)
  • feat: support passing in device and client to XLA (#1020) (@avik-pal)
  • fix: avoid tracing through Lux models (#1021) (@avik-pal)
  • chore: bump crate-ci/typos from 1.26.8 to 1.27.0 (#1022) (@dependabot[bot])
  • ci: combine workflows (#1023) (@avik-pal)
  • fix: init hidden state for reactant (#1026) (@avik-pal)
  • fix for Zygote and ChainRules OneElement (#1038) (@CarloLucibello)
  • Link to quickstart explaining calling models in interface (#1040) (@oxinabox)
  • fix: make enzyme testing opt-in for now (#1041) (@avik-pal)
  • test: try re-enabling enzyme testing on 0.13.16 (#1042) (@avik-pal)
  • fix: missing zero leads to NaNs (#1044) (@avik-pal)
  • chore: bump all Optimisers version (#1058) (@avik-pal)
  • CompatHelper: bump compat for Optimisers to 0.4 for package DDIM, (keep existing compat) (#1059) (@github-actions[bot])
  • feat: update ConvMixer to support reactant (#1063) (@avik-pal)
  • fix: gracefully handle OneHotArrays (#1064) (@avik-pal)
  • chore: bump crate-ci/typos from 1.27.0 to 1.27.3 (#1065) (@dependabot[bot])
  • fix: unsafe free for OneHotArrays (#1067) (@avik-pal)
  • feat: update to Functors v0.5 (#1069) (@avik-pal)
  • ci: generate tags for subdir projects (#1071) (@avik-pal)
  • docs: restructure the docs a bit (#1083) (@avik-pal)
  • fix: dataloaders use adapt_structure (#1084) (@avik-pal)
  • fix: mark kwargs in functor as leaf (#1085) (@avik-pal)
  • docs: trigger build for docs (#1087) (@avik-pal)
  • docs: initial prototype of exporting Lux models to Jax (#1088) (@avik-pal)
  • non_differentiable gpu_device and cpu_device (#1089) (@CarloLucibello)
  • chore: use [sources] in Project.toml (#1090) (@avik-pal)
  • fix: add lineinfo to compact (#1091) (@avik-pal)
  • docs: highlight Reactant in landing page (#1092) (@avik-pal)
  • chore: bump codecov/codecov-action from 4 to 5 (#1093) (@dependabot[bot])
  • ci: install specific AMDGPU version (#1096) (@avik-pal)
  • ci: use sources for docs (#1100) (@avik-pal)
  • Add Reactant and TPU to autodiff.md (#1101) (@wsmoses)
  • refactor: cleanup some old pre-1.0 hacks (#1102) (@avik-pal)
  • feat: add bf16 function (#1104) (@avik-pal)
  • docs: add CUDA.CURAND.default_rng() to docs (#1105) (@avik-pal)
  • fix: use generic broadcasting for complex numbers (#1106) (@avik-pal)
  • Update exporting_to_jax.md (#1107) (@wsmoses)
  • CompatHelper: bump compat for LossFunctions in [weakdeps] to 1, (keep existing compat) (#1108) (@github-actions[bot])
  • Add TrainState docstring with Optimisers API (#1110) (@abhro)
  • Fix markdown list in docstring (#1111) (@abhro)
  • chore: bump crate-ci/typos from 1.27.3 to 1.28.1 (#1113) (@dependabot[bot])
  • fix: handle debug leafs with dispatch (#1115) (@avik-pal)
  • test: allow the latest AMDGPU to be installed (#1116) (@avik-pal)
  • test: add unsafe_free to skip list (#1117) (@avik-pal)
  • fix: use the correct dispatches for device overloads (#1118) (@avik-pal)
  • test: try fixing enzyme test (#1119) (@avik-pal)
  • ci(github-actions): use julia-actions/cache (#1122) (@avik-pal)
  • test: re-enable flux testing (#1123) (@avik-pal)
  • chore: bump minimum Reactant version (#1125) (@avik-pal)
  • fix: try fixing cuda install in tests (#1126) (@avik-pal)
  • docs: run partial dataset only on CI (#1128) (@avik-pal)
  • chore: bump crate-ci/typos from 1.28.1 to 1.28.2 (#1130) (@dependabot[bot])
  • fix: preserve object when device is same (#1133) (@avik-pal)
  • fix: use functors for testing wrapped arrays (#1134) (@avik-pal)
  • fix: remove old patches around reactant bug (#1135) (@avik-pal)
  • CompatHelper: bump compat for Flux in [weakdeps] to 0.16, (keep existing compat) (#1136) (@github-actions[bot])
  • chore: bump crate-ci/typos from 1.28.2 to 1.28.3 (#1137) (@dependabot[bot])
  • fix: update to new reactant changes (#1140) (@avik-pal)
  • chore: bump crate-ci/typos from 1.28.3 to 1.28.4 (#1144) (@dependabot[bot])
  • don't declare implicitly exported functions public (#1147) (@simeonschaub)
  • use return_type instead of _return_type (#1148) (@simeonschaub)
  • feat: more nested AD rules (#1151) (@avik-pal)
  • fix: update default rng for reactant (#1152) (@avik-pal)
  • Change update step to thousands in PINN 2D PDE (#1153) (@abhro)
  • CompatHelper: add new compat entry for ProgressTables at version 0.1 for package CIFAR10, (keep existing compat) (#1154) (@github-actions[bot])
  • device(NN) should only give warning once (#1156) (@vpuri3)
  • feat: conditional VAE (#1157) (@avik-pal)
  • fix: ConditionalVAE on CI (#1159) (@avik-pal)
  • CompatHelper: add new compat entry for Optimisers at version 0.4 for package ConditionalVAE, (keep existing compat) (#1161) (@github-actions[bot])
  • CompatHelper: add new compat entry for StableRNGs at version 1 for package ConditionalVAE, (keep existing compat) (#1162) (@github-actions[bot])
  • CompatHelper: add new compat entry for Comonicon at version 1 for package ConditionalVAE, (keep existing compat) (#1163) (@github-actions[bot])
  • [MLDataDevices] Bump deps (#1164) (@pxl-th)
  • chore: bump crate-ci/typos from 1.28.4 to 1.29.4 (#1183) (@dependabot[bot])
  • fix: pass in RNG to shuffle (#1188) (@avik-pal)

Closed issues:

  • TagBot trigger issue (#6)
  • Immutable Arrays (#8)
  • Suboptimal GroupNorm Implementation on GPUs (#10)
  • Recurrent Neural Networks (#12)
  • Flux Feature Parity (#13)
  • Front page example broken (#17)
  • Distributed Data Parallel Training on examples/ImageNet error (#18)
  • ] add Lux doesn't work (#19)
  • Support for non-CUDNN data types (#22)
  • Hope to add more examples (#25)
  • Train examples/NeuralODE error (#26)
  • Thoughts on docs & tutorials (#28)
  • Available architectures (#34)
  • Register (#36)
  • PairwiseFusion takes more inputs than documented (#38)
  • Remove Requires.jl (#45)
  • Performance regressions with ComponentArrays (#49)
  • How do I extend Chain to have multiple inputs (#53)
  • Nested Lists broken with the current Documentation (#68)
  • Remove ActivationFunction? (#71)
  • Quickstart Example: using Optimisers, Zygote do not work unless we explicitly add those to current environment. (#75)
  • Remove track_stats from GroupNorm (#78)
  • Named Layers for Container Types (#79)
  • Tracking support for Enzyme.jl (#81)
  • Lighter syntax for stateless networks? (#83)
  • Improve Julia & Lux for the uninitiated (#90)
  • Remaining Deprecations (#91)
  • Scalar indexing problem for the NeuralODE example (#92)
  • Basic example from Migrating from Flux to Lux is broken || normalization issue (#94)
  • WeightNorm causes NaN for Conv layer gradients (#95)
  • [Feature request] Another type of Chain that sequentially passing x and st (#96)
  • Generalize normalization to work for unconstrained types (#98)
  • RNN and LSTM break when using GPU (#100)
  • Can one compose lux layers with graph neural network (#102)
  • optimising parameters with Optimization.jl (#108)
  • add OrdinaryDiffEq downstream test (#110)
  • Make it easier to pass empty state st = (;) (#118)
  • is there transposed convolution (#122)
  • Support for multidimensional data? (#123)
  • Inconsistent descripition of PairwiseFusion (#130)
  • getindex for Chain (#131)
  • No method matching with argument IRTools.Inner.Undefined in gradient computation. (#134)
  • checkpointing for backpropagation (#139)
  • CUDNNError during backpropagation in simple CNN (#141)
  • Proposal of Lux + Enzyme + CUDA differential programming example (#145)
  • concat input and output of a layer (#146)
  • How to avoid the activation function conversion (#152)
  • Allow dispatch on custom array types (#157)
  • Nondeterministic method error for some gradients... (#159)
  • Tied Weights (#182)
  • Frozen Weights (#183)
  • layer_map fails on custom containers (#187)
  • Remove LuxCore manual installation in workflows (#192)
  • Custom layers (#220)
  • Lux.setup not found (#224)
  • Support for CuArray{Float64} (#237)
  • How to create a chain of LSTMcells in Lux.jl? (#239)
  • Constrain the output layer! (#242)
  • On using ComponentArray for L2 regularization (#243)
  • Shared Lux Testing Package (#270)
  • Automatic Differentiation Backends (#271)
  • Get the full run of a recurrent cell using Lux (#282)
  • Nested AD doesn't work with ComponentArrays (#286)
  • Remove weak dependencies (#294)
  • Lux Recurrence history is not in the correct order (I think) (#302)
  • tanh activation function in GRUCell docstring (#308)
  • WARNING: Wrapping Vararg directly in UnionAll is deprecated (wrap the tuple instead). (#312)
  • Adding AbstractRecurrentCell (#320)
  • Splitting weights initializers in own package (#321)
  • Include documentation on how to save models with Lux (#329)
  • network with multiple inputs (#330)
  • Working with NamedTuples (#331)
  • bilinear doesn't work for AbstractArray{T,3} (#332)
  • Use ADTypes (#354)
  • Add ability to load weights into Dense (#361)
  • Initialize weights of network from csv file (#369)
  • BatchNorm(; affine = false) in a Chain missing _getproperty(::SubArray... when ps = ComponentArray(ps) (#371)
  • Slightly broken example Polynomial Fitting (#374)
  • Fixing the testing on buildkite (#375)
  • Implementation of custom layer in Lux (#376)
  • deploy versions (#384)
  • DocumenterVitepress module into package (#385)
  • Segfault when using Lux.Conv with CUDA (#386)
  • Documentation Enhancement Suggestions (#387)
  • @save not defined? (#403)
  • The MNIST Neural ODE example does not work with ReverseDiffAdjoint (#407)
  • Update Documentation to mention loading AD Packages for Training (#415)
  • ComponentArrays makes coupling layers type-unstable unexpectedly (#416)
  • ComponentArrays makes Custom Layers containing Chains type-unstable (#417)
  • Custom Layer, Differential Equation as Activation Function. (#418)
  • Gradients of shared parameters do not behave as expected (#420)
  • inconsistent LSTM results in time series forecast between Flux.jl and Lux.jl (#424)
  • Broadcast Layer (#426)
  • Can't use freeze with ComponentArray. (#427)
  • Lux.testmode resorts to scalar indexing with frozen params (#432)
  • Custom Model for Neural ODE (#441)
  • Periodic Padding (#451)
  • Bug in ConvTranspose? (#455)
  • Generating Parameters with CUDA (#456)
  • Zygote gradient fails for Custom Layer (#457)
  • Adaptors should not change the dtype (#462)
  • Any equivalency to torch.nn.Parameter? (#464)
  • Support for MultiRNNCell (#472)
  • GPU evaluation of Recurrence() broken on Metal (#473)
  • Recurrent Layers don't take Vectors as Input (#478)
  • How to choose a specific GPU device (#480)
  • Training in batches and building gradient as mean of individual gradients (#481)
  • ComponentArrays type piracy (#482)
  • No Gradients with respect to parameters using Custom Layers (#483)
  • Where is the API doc for activatations (#486)
  • Distributed Training (#494)
  • AMDGPU CI takes a lot of time (#495)
  • SimpleRNN example is broken on AMDGPU (#498)
  • Support for multi-core CPUs? (#502)
  • Bayesian NN example throws Pkg Extension load errors (#507)
  • 404 many Tutorial links are invalid (#508)
  • uninitiated tutorial replicate part shows different numbers but should show the same (#513)
  • uninitiated tutorial - Code Font confusing for pipe |> (#514)
  • Documentation Request: Standardize the handling of the state st (#515)
  • Let @compact return the updated state (#516)
  • Documentation Request: Have a section about Loss Functions (#517)
  • Documentation Request: Also list GeometricML.jl and SciML.ai under Ecosystem (#518)
  • Should replicate be part of LuxCore? (#531)
  • pad=SamePad() does not work as intended in ConvTranspose. (#534)
  • Array of Structs to Struct of Array transformation for some AD backends (#538)
  • Documentation on main is broken (#541)
  • Lux.AMDGPU: type cast throws error (#542)
  • l should be clarified. Maybe a typo? (#543)
  • Bug when converting model with single layer to SimpleChains (#545)
  • Improve broadcasting via FastBroadcast.jl (#549)
  • FYI: Comment and question (#550)
  • TypeError using SimpleChains integration (#551)
  • SimpleChains-backed models do not setup consistenly with fixed RNG seeding (#554)
  • Stable docs missing (#566)
  • Tutorial links too small (#567)
  • Constraint on weights and bias (#568)
  • Continuous Benchmarking (#573)
  • Allow "const" arrays as inputs to @compact (#588)
  • Pullback over jacobian (with CUDA) (#602)
  • Zygote nested AD failure (#604)
  • Meta-Issue for improvements to @compact (#606)
  • Nested AD for Parameter Gradient/Jacobian (#610)
  • Rewrite @layer_map to use KeyPath from Functors (#615)
  • Extracting part of a model, with the corresponding parameters and states (#617)
  • Differentiating Zygote.pullback (#621)
  • Batched Jacobian Functions (#622)
  • Error for JVP by Enzyme (#628)
  • [Nested AD] Incorrect gradient when taking a gradient over a gradient using StatefulLuxLayer (#630)
  • batched_jacobian + CUDA => InvalidIRError (#636)
  • Add a compiled tape version for ReverseDiff (#642)
  • Simple MLP requires Enzyme runtimeActivity (#647)
  • Using swish as Conv activation function errors on the GPU (#662)
  • Fast activation error (#663)
  • Definition and implementation of 'Loss' in Linear Regression Tutorial "Julia & Lux for the Uninitiated" (#664)
  • Add improper qualified accesses checks (#667)
  • rrule for Base.merge defined in ChainRulesCore (#678)
  • Different activation functions in one layer (#680)
  • Remove Auto-Flattening of Chains (#682)
  • Add type-stability checks via DispatchDoctor.jl (#683)
  • Support for inactive arguments in DifferentiationInterface (#685)
  • Feature request: Bidirectional for RNN layer. (#687)
  • Predefined loss functions (#689)
  • Static Type Parameters not accessible inside @compact (#692)
  • Auto detect and warn against performance pitfalls (#699)
  • Add documentation about how to partial tests. (#701)
  • Feature request: 1D CNN, i.e. keras.layer.Conv1d (#709)
  • AMDGPU CI stalls (#715)
  • Inference using NN :: Chain inside a GPU kernel (#720)
  • custom show is often not valid julia syntax to reconstruct (#730)
  • Roadmap to v1 (#735)
  • Error in compute_gradients when loss already has a Zygote.gradient (#743)
  • NCCL Complex wrapper (#747)
  • Drop Tracker.jl support for SimpleChains (#753)
  • Feature request: TimeDistributed Layer (#758)
  • Feature Request: Allow recurrent layers with 2D input (features * seq_length), even if the order is BatchLastIndex (#767)
  • Missing statistics tracking in normalization layers (#780)
  • unexpected parameter type for AbstractExplicitContainer with single trainable field (#795)
  • Test with DispatchDoctor error mode (#797)
  • Change defaults for Layers to match Pytorch (#808)
  • Gradient checkpointing/ rematerialization (#816)
  • how to use Lux.jl utility 'BinaryCrossEntropy' (#841)
  • Mixed-Precision Matrix Multiply Performance Regression (#847)
  • Lux.testmode not updating state for BatchNorm layers for nested models? (#849)
  • Add Float128 support (#851)
  • Add multiple cpu cores and multiple Julia computers support (#852)
  • Enzyme.Forward hits Octavian dispatch in Dense (#853)
  • Move uncommon layers to Boltz.jl (#854)
  • Update the ImageNet example (#878)
  • Downstream Compat Updates (#880)
  • MethodError: no method matching applychain (#884)
  • Question: how can one use TrainState.cache? (#892)
  • Problem with Enzyme AD and SArray parameters (#935)
  • Is AbstractLuxContainerLayer abandoned in Lux 1.0.4? (#942)
  • Docs build is broken (#957)
  • Encoder-Decoder RNNs (#961)
  • Efficient way to compute Jacobian in nested AD (#963)
  • Zygote + ForwardDiff support for complex differentiation (#977)
  • The returned values loss and train_state of single_train_step! are not compatible (#979)
  • Segfault for simple Zygote pullback (#980)
  • Add CUDA.CURAND.default_rng() to the table (#1003)
  • Question on intialization after breaking changes (#988)
  • Documentation: Using MLFlow with Lux.jl (#990)
  • Documentation of Layer Freezing might need small update (#991)
  • scalar indexing of gpu array in Zygote gradient (#1016)
  • sending to devices tuples, named tuples and arrays does not keep track of identical objects (#1017)
  • Enzyme 0.13 fails with batched matrix multiply (#1024)
  • Compiling Recurrent Models with Reactant (#1025)
  • Getting NaNs in the pullback of ReverseSequence (#1043)
  • Simplify recursive code with Functors v0.5 (#1061)
  • unsafe_free! from MLDataDevices fails for OneHotArrays (#1066)
  • getkeypath and layer_map not fully working with model with Parallel layers (#1068)
  • Re-enable Flux compatibility testing (#1070)
  • [AMDGPU CI] Circular dependencies disabling precompilation (#1095)
  • LuxTestUtils.Constant clashes with DifferentiationInterface.Constant (#1103)
  • Error in trying to use Optimization.jl for LSTM training based on Lux.jl (#1114)
  • Documentation Build Stalls (#1120)
  • CUDA Test CI is broken (#1121)
  • [MLDataDevices] devices don't preserve identity (#1129)
  • Random Numbers & Reactant (#1131)
  • Problem with Lux & SymbolicsLuxExt (#1132)
  • How to implement a detach operation similar to Pytorch? (#1138)
  • Unexpected handling of LR Schedulers in TrainState (#1143)
  • Directly construct Optimiser state on Reactant buffers (#1145)
  • (AbstractDevice)(x) should respect Adapt.adapt_structure (#1149)
  • CUDA 2nd order AD with MaxPool and logsoftmax (#1150)
  • Recurrent cells cannot be chained with other layers (#1155)
  • sparse_init doesn't use provided rng fully (#1185)
  • Incorrect IR generated for some neural networks (#1186)