Skip to content

Maddy12/CAP5415-KeypointDetection

Repository files navigation

CAP5415-KeypointDetection

Set up

First you need to download the validation dataset for 2014. There are two ways you can do this.

  1. Visit the COCO website and download http://images.cocodataset.org/zips/val2014.zip and http://images.cocodataset.org/annotations/annotations_trainval2014.zip
  2. In the command line:
mkdir dataset
mkdir dataset/COCO/
cd dataset/COCO/
git clone https://github.com/pdollar/coco.git
cd ../../

mkdir dataset/COCO/images

wget http://msvocds.blob.core.windows.net/annotations-1-0-3/person_keypoints_trainval2014.zip
wget http://msvocds.blob.core.windows.net/coco2014/val2014.zip

unzip person_keypoints_trainval2014.zip -d dataset/COCO/
unzip val2014.zip -d dataset/COCO/images

rm -f person_keypoints_trainval2014.zip
rm -f val2014.zip

You will also need to download the weight paths locally due to their size: The classifier can be downloaded by the following link and should be stored in path 'classifier_utils/'

The multipose-model weights can be downloaded by the following link and should be stored in path 'multipose_utils/multipose_model/'

Run

Make the respeective changes to the passed filepaths based on your directory structure and then run in Python3+ evaluation.py.

main_dir = '/home/CAP5415-KeypointDetection/'
image_dir = os.path.join(main_dir, 'dataset/COCO_data/images')
model_path = os.path.join(main_dir, 'multipose_utils/multipose_model/coco_pose_iter_440000.pth.tar')
output_dir = os.path.join(main_dir, 'results')
anno_dir = os.path.join(main_dir, 'dataset/COCO_data/')
vis_dir = os.path.join(main_dir, 'dataset/COCO_data/vis')
post_model_path = os.path.join(main_dir, 'classifier_utils/model_best.pth.tar')

The scripts processes ~1000 images set aside for validation by the author of the original paper. The results will be output in the command line.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages