Skip to content

Commit

Permalink
merge
Browse files Browse the repository at this point in the history
  • Loading branch information
dvadym committed Sep 9, 2024
2 parents 809d597 + 71875ea commit 1581b8e
Show file tree
Hide file tree
Showing 11 changed files with 922 additions and 554 deletions.
33 changes: 30 additions & 3 deletions analysis/contribution_bounders.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""ContributionBounder for utility analysis."""

import numpy as np
from pipeline_dp import contribution_bounders
from pipeline_dp import sampling_utils
from typing import Iterable


class AnalysisContributionBounder(contribution_bounders.ContributionBounder):
Expand Down Expand Up @@ -65,9 +68,33 @@ def rekey_per_privacy_id_per_partition_key_and_unnest(pid_pk_v_values):
for partition_key, values in partition_values:
if sampler is not None and not sampler.keep(partition_key):
continue
yield (privacy_id, partition_key), (len(values), sum(values),
num_partitions_contributed,
num_contributions)
# Sum values.
# values can contain multi-columns, the format is the following
# 1 column:
# input: values = [v_0:float, ... ]
# output: v_0 + ....
# k columns (k > 1):
# input: values = [v_0=(v_00, ... v_0(k-1)), ...]
# output: (v_00+v_10+..., ...)
if not values:
# Empty public partitions
sum_values = 0
elif len(values) == 1:
# No need to sum, return 0th value
sum_values = values[0]
elif not isinstance(values[0], Iterable):
# 1 column
sum_values = sum(values)
else:
# multiple value columns, sum each column independently
sum_values = tuple(np.array(values).sum(axis=0).tolist())

yield (privacy_id, partition_key), (
len(values),
sum_values,
num_partitions_contributed,
num_contributions,
)

# Unnest the list per privacy id.
col = backend.flat_map(
Expand Down
26 changes: 23 additions & 3 deletions analysis/tests/contribution_bounders_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,8 @@ def _run_contribution_bounding(self,
input,
max_partitions_contributed,
max_contributions_per_partition,
partitions_sampling_prob: float = 1.0):
partitions_sampling_prob: float = 1.0,
aggregate_fn=count_aggregate_fn):
params = CrossAndPerPartitionContributionParams(
max_partitions_contributed, max_contributions_per_partition)

Expand All @@ -50,7 +51,7 @@ def _run_contribution_bounding(self,
bounder.bound_contributions(input, params,
pipeline_dp.LocalBackend(),
_create_report_generator(),
count_aggregate_fn))
aggregate_fn))

def test_contribution_bounding_empty_col(self):
input = []
Expand Down Expand Up @@ -117,8 +118,27 @@ def test_contribution_bounding_cross_partition_bounding_and_sampling(self):
# Check per- and cross-partition contribution limits are not enforced.
self.assertEqual(set(expected_result), set(bound_result))

def test_contribution_bounding_cross_partition_bounding_and_2_column_values(
self):
input = [("pid1", 'pk1', (1, 2)), ("pid1", 'pk1', (3, 4)),
("pid1", 'pk2', (-1, 0)), ("pid2", 'pk1', (5, 5))]
max_partitions_contributed = 3
max_contributions_per_partition = 5

class SamplingL0LinfContributionBounderTest(parameterized.TestCase):
bound_result = self._run_contribution_bounding(
input,
max_partitions_contributed,
max_contributions_per_partition,
aggregate_fn=lambda x: x)

expected_result = [(('pid1', 'pk2'), (1, (-1, 0), 2, 3)),
(('pid1', 'pk1'), (2, (4, 6), 2, 3)),
(('pid2', 'pk1'), (1, (5, 5), 1, 1))]
# Check per- and cross-partition contribution limits are not enforced.
self.assertEqual(set(expected_result), set(bound_result))


class NoOpContributionBounderTest(parameterized.TestCase):

def test_contribution_bounding_doesnt_drop_contributions(self):
# Arrange.
Expand Down
31 changes: 30 additions & 1 deletion pipeline_dp/data_extractors.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,20 @@
# Copyright 2022 OpenMined.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classes for keeping data (privacy unit, partition etc) extractors."""

import dataclasses
from typing import Callable
from typing import Callable, List, Optional


@dataclasses.dataclass
Expand All @@ -15,6 +30,20 @@ class DataExtractors:
value_extractor: Callable = None


@dataclasses.dataclass
class MultiValueDataExtactors(DataExtractors):
"""Data extractors with multiple value extractors.
Each extractor corresponds to the different value to aggregate.
"""
value_extractors: Optional[List[Callable]] = None

def __post_init__(self):
if self.value_extractors is not None:
self.value_extractor = lambda row: tuple(
e(row) for e in self.value_extractors)


@dataclasses.dataclass
class PreAggregateExtractors:
"""Data extractors for pre-aggregated data.
Expand Down
Loading

0 comments on commit 1581b8e

Please sign in to comment.