-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add inference scripts for internlm-xcomposer
- Loading branch information
Showing
4 changed files
with
322 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
from transformers import AutoModel, AutoTokenizer | ||
import torch | ||
|
||
import random | ||
from copy import deepcopy | ||
from PIL import Image | ||
import json | ||
from tqdm import tqdm | ||
|
||
torch.set_grad_enabled(False) | ||
|
||
|
||
import os | ||
os.makedirs("results/mix-internlm_xcomposer_vl/",exist_ok=True) | ||
torch.manual_seed(1234) | ||
|
||
# init model and tokenizer | ||
model = AutoModel.from_pretrained('DLight1551/internlm-xcomposer-vl-7b-qinstruct-full', trust_remote_code=True).cuda().eval() | ||
tokenizer = AutoTokenizer.from_pretrained('DLight1551/internlm-xcomposer-vl-7b-qinstruct-full', trust_remote_code=True) | ||
model.tokenizer = tokenizer | ||
|
||
image_paths = [ | ||
"../datasets/AGIQA-3K/database/", | ||
"../datasets/1024x768/", | ||
"../datasets/SPAQ/", | ||
"../datasets/FLIVE_Database/database/", | ||
"../datasets/LIVEC/Images/", | ||
"../datasets/CGIQA-6K/database/", | ||
"../datasets/kadid10k/images/", | ||
] | ||
|
||
json_prefix = "../datasets/json/" | ||
jsons = [ | ||
json_prefix + "agi.json", | ||
json_prefix + "koniq.json", | ||
json_prefix + "spaq.json", | ||
json_prefix + "flive.json", | ||
json_prefix + "livec.json", | ||
json_prefix + "cgi.json", | ||
json_prefix + "kadid.json", | ||
] | ||
|
||
def get_logits(model, text, image_path): | ||
image = Image.open(image_path).convert("RGB") | ||
with torch.cuda.amp.autocast(): | ||
image = model.vis_processor(image).unsqueeze(0).to(model.device) | ||
img_embeds = model.encode_img(image) | ||
prompt_segs = text.split('<ImageHere>') | ||
prompt_seg_tokens = [ | ||
model.tokenizer(seg, | ||
return_tensors='pt', | ||
add_special_tokens=i == 0). | ||
to(model.internlm_model.model.embed_tokens.weight.device).input_ids | ||
for i, seg in enumerate(prompt_segs) | ||
] | ||
prompt_seg_embs = [ | ||
model.internlm_model.model.embed_tokens(seg) | ||
for seg in prompt_seg_tokens | ||
] | ||
prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]] | ||
|
||
prompt_embs = torch.cat(prompt_seg_embs, dim=1) | ||
|
||
return model.internlm_model( | ||
inputs_embeds=prompt_embs).logits[:,-1] | ||
|
||
for image_path, input_json in zip(image_paths, jsons): | ||
with open(input_json) as f: | ||
iqa_data = json.load(f) | ||
|
||
for i, llddata in enumerate(tqdm(iqa_data, desc=image_path)): | ||
message = "Rate the quality of the image." | ||
|
||
llddata["logit_good"] = 0. | ||
llddata["logit_poor"] = 0. | ||
|
||
images = [image_path+llddata["img_path"]] | ||
for image in images: | ||
# 1st dialogue turn | ||
output_logits = get_logits(model, message, image) | ||
probs, inds = output_logits.sort(dim=-1,descending=True) | ||
lgood, lpoor = output_logits[0,18682].item(), output_logits[0,5527].item() | ||
llddata["logit_good"] += lgood | ||
llddata["logit_poor"] += lpoor | ||
|
||
with open(f"results/mix-internlm_xcomposer_vl/{input_json.split('/')[-1]}", "a") as wf: | ||
json.dump(llddata, wf) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
from transformers import AutoModel, AutoTokenizer | ||
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM | ||
|
||
import random | ||
from copy import deepcopy | ||
import io | ||
import os | ||
import base64 | ||
import torch | ||
import numpy as np | ||
from transformers import StoppingCriteria, StoppingCriteriaList | ||
import os | ||
from typing import Optional | ||
import xlsxwriter | ||
import pandas as pd | ||
from PIL import Image | ||
import pandas as pd | ||
from torch.utils.data import Dataset | ||
import torchvision | ||
|
||
torch.set_grad_enabled(False) | ||
|
||
torch.manual_seed(1234) | ||
|
||
model = AutoModel.from_pretrained('DLight1551/internlm-xcomposer-vl-7b-qinstruct-full', trust_remote_code=True).cuda().eval() | ||
tokenizer = AutoTokenizer.from_pretrained(tgt_dir, trust_remote_code=True) | ||
model.tokenizer = tokenizer | ||
|
||
def generate_answer(model, text, image_path): | ||
image = Image.open(image_path).convert("RGB") | ||
with torch.cuda.amp.autocast(): | ||
image = model.vis_processor(image).unsqueeze(0).to(model.device) | ||
img_embeds = model.encode_img(image) | ||
prompt_segs = text.split('<ImageHere>') | ||
prompt_seg_tokens = [ | ||
model.tokenizer(seg, | ||
return_tensors='pt', | ||
add_special_tokens=i == 0). | ||
to(model.internlm_model.model.embed_tokens.weight.device).input_ids | ||
for i, seg in enumerate(prompt_segs) | ||
] | ||
prompt_seg_embs = [ | ||
model.internlm_model.model.embed_tokens(seg) | ||
for seg in prompt_seg_tokens | ||
] | ||
prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]] | ||
|
||
prompt_embs = torch.cat(prompt_seg_embs, dim=1) | ||
|
||
outputs = model.internlm_model.generate( | ||
inputs_embeds=prompt_embs, | ||
max_new_tokens=5, | ||
num_beams=5, | ||
do_sample=False, | ||
min_length=1, | ||
top_p=0.9, | ||
repetition_penalty=1.5, | ||
length_penalty=1.0, | ||
temperature=1.0, | ||
stopping_criteria=stopping_criteria, | ||
) | ||
#print (outputs) | ||
output_token = outputs[0] | ||
if output_token[0] == 0: | ||
output_token = output_token[1:] | ||
if output_token[0] == 1: | ||
output_token = output_token[1:] | ||
output_text = model.tokenizer.decode(output_token, | ||
add_special_tokens=False) | ||
|
||
output_text = output_text.split(model.eoa)[0] | ||
output_text = output_text.split('<|Bot|>')[-1].strip() | ||
return output_text | ||
|
||
class StoppingCriteriaSub(StoppingCriteria): | ||
def __init__(self, stops=[], encounters=1): | ||
super().__init__() | ||
self.stops = stops | ||
|
||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): | ||
for stop in self.stops: | ||
if torch.all((stop == input_ids[0][-len(stop):])).item(): | ||
return True | ||
|
||
return False | ||
|
||
stop_words_ids = [ | ||
torch.tensor([103027]).cuda(), ### end of human | ||
torch.tensor([103028]).cuda(), ### end of bot | ||
] | ||
stopping_criteria = StoppingCriteriaList( | ||
[StoppingCriteriaSub(stops=stop_words_ids)]) | ||
|
||
## define split/language here ## | ||
lang = "en" # en | zh | ||
split = "test" # dev | test (not supported for you) | ||
## define split/language here ## | ||
|
||
import json | ||
from tqdm import tqdm | ||
if lang == "en": | ||
with open(f"llvisionqa_{split}.json") as f: | ||
llvqa_data = json.load(f) | ||
elif lang == "zh": | ||
zh_split = "验证集" if split == "dev" else "测试集" | ||
with open(f"质衡-问答-{zh_split}.json") as f: | ||
llvqa_data = json.load(f) | ||
else: | ||
raise NotImplementedError("Q-Bench does not support languages other than English (en) and Chinese (zh) yet. Contact us (https://github.com/Q-Future/Q-Bench/) to convert Q-Bench into more languages.") | ||
|
||
|
||
correct = np.zeros((3,4)) | ||
all_ = np.zeros((3,4)) | ||
answers = {} | ||
for llddata in tqdm((llvqa_data)): | ||
t, c = llddata["type"], llddata["concern"] | ||
|
||
options_prompt = '' | ||
for choice, ans in zip(["A.", "B.", "C.", "D."], llddata["candidates"]): | ||
options_prompt += f"{choice} {ans}\n" | ||
if "correct_ans" in llddata and ans == llddata["correct_ans"]: | ||
correct_choice = choice[0] | ||
|
||
img_prompt = ' <|User|>:<ImageHere>' | ||
txt_prompt = 'Please answer this question by choosing the correct choice.' | ||
context = 'N/A' | ||
mid_prompt = 'Context: ' + context + '\nQuestion: ' + llddata["question"] + '\nOptions: ' + options_prompt | ||
ans_prompt = ' <|Bot|>: Answer: The answer is' | ||
text = img_prompt + txt_prompt + mid_prompt + '<TOKENS_UNUSED_0>' + ans_prompt | ||
print(text) | ||
|
||
img_path = f"../datasets/LLVQA/images/" + llddata["img_path"] | ||
# 1st dialogue turn | ||
response = generate_answer(model, text, img_path) | ||
all_[t][c] += 1 | ||
if response[0] not in ['A', 'B', 'C', 'D']: | ||
print("[Response]: {}, [Correct Ans]: {}".format(response, correct_choice)) | ||
if split == 'dev' and response[0] == correct_choice: | ||
correct[t][c] += 1 | ||
|
||
print (correct.sum(1)/all_.sum(1)) | ||
print (correct.sum(0)/all_.sum(0)) | ||
print ("Final Correctness": correct.sum()/all_.sum()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from transformers import AutoModel, AutoTokenizer | ||
import torch | ||
|
||
import random | ||
from copy import deepcopy | ||
import json | ||
from tqdm import tqdm | ||
from decord import VideoReader | ||
from PIL import Image | ||
|
||
torch.set_grad_enabled(False) | ||
|
||
|
||
import os | ||
os.makedirs("results/mix-internlm_xcomposer_vl/",exist_ok=True) | ||
torch.manual_seed(1234) | ||
|
||
# init model and tokenizer | ||
model = AutoModel.from_pretrained('DLight1551/internlm-xcomposer-vl-7b-qinstruct-full', trust_remote_code=True).cuda().eval() | ||
tokenizer = AutoTokenizer.from_pretrained('DLight1551/internlm-xcomposer-vl-7b-qinstruct-full', trust_remote_code=True) | ||
model.tokenizer = tokenizer | ||
|
||
print(tokenizer(["good"]), tokenizer.decode(5527)) | ||
|
||
image_paths = [ | ||
"../datasets/KoNViD_1k_videos/", | ||
] | ||
|
||
json_prefix = "../datasets/json/" | ||
jsons = [ | ||
json_prefix + "konvid.json", | ||
] | ||
|
||
def load_video(video_file): | ||
vr = VideoReader(video_file) | ||
|
||
# Get video frame rate | ||
fps = vr.get_avg_fps() | ||
|
||
# Calculate frame indices for 1fps | ||
frame_indices = [int(fps * i) for i in range(int(len(vr) / fps))] | ||
|
||
return [Image.fromarray(vr[index].asnumpy()) for index in frame_indices] | ||
|
||
def get_logits(model, text, image): | ||
with torch.cuda.amp.autocast(): | ||
image = model.vis_processor(image).unsqueeze(0).to(model.device) | ||
img_embeds = model.encode_img(image) | ||
prompt_segs = text.split('<ImageHere>') | ||
prompt_seg_tokens = [ | ||
model.tokenizer(seg, | ||
return_tensors='pt', | ||
add_special_tokens=i == 0). | ||
to(model.internlm_model.model.embed_tokens.weight.device).input_ids | ||
for i, seg in enumerate(prompt_segs) | ||
] | ||
prompt_seg_embs = [ | ||
model.internlm_model.model.embed_tokens(seg) | ||
for seg in prompt_seg_tokens | ||
] | ||
prompt_seg_embs = [prompt_seg_embs[0], img_embeds, prompt_seg_embs[1]] | ||
|
||
prompt_embs = torch.cat(prompt_seg_embs, dim=1) | ||
|
||
return model.internlm_model( | ||
inputs_embeds=prompt_embs).logits[:,-1] | ||
|
||
|
||
for image_path, input_json in zip(image_paths, jsons): | ||
with open(input_json) as f: | ||
iqa_data = json.load(f) | ||
|
||
for i, llddata in enumerate(tqdm(iqa_data, desc=image_path)): | ||
message = "Rate the quality of the image." | ||
|
||
images = load_video(image_path + llddata["img_path"]) | ||
llddata["logit_good"] = 0 | ||
llddata["logit_poor"] = 0 | ||
|
||
for image in images: | ||
# 1st dialogue turn | ||
output_logits = get_logits(model, message, image) | ||
probs, inds = output_logits.sort(dim=-1,descending=True) | ||
lgood, lpoor = output_logits[0,18682].item(), output_logits[0,5527].item() | ||
llddata["logit_good"] += lgood | ||
llddata["logit_poor"] += lpoor | ||
|
||
with open(f"results/mix-internlm_xcomposer_vl/{input_json.split('/')[-1]}", "a") as wf: | ||
json.dump(llddata, wf) |