Skip to content

Commit

Permalink
Remove deprecation warnings from numpy 1.20.0
Browse files Browse the repository at this point in the history
  • Loading branch information
jdblischak committed Mar 22, 2022
1 parent 8c9bfc7 commit 398d1a9
Show file tree
Hide file tree
Showing 8 changed files with 29 additions and 29 deletions.
6 changes: 3 additions & 3 deletions compute_ldscores_from_ld.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,8 @@ def load_ld_npz(ld_dir, ld_prefix):
def get_bcor_meta(bcor_obj):
df_ld_snps = bcor_obj.getMeta()
df_ld_snps.rename(columns={'rsid':'SNP', 'position':'BP', 'chromosome':'CHR', 'allele1':'A1', 'allele2':'A2'}, inplace=True, errors='raise')
df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int)
df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int64)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int64)
df_ld_snps = set_snpid_index(df_ld_snps)
return df_ld_snps

Expand Down Expand Up @@ -215,7 +215,7 @@ def compute_ldscores_chr(df_annot_chr, ld_dir=None, use_ukb=False, n=None, ld_fi

#check if the data is binary
df_annot_chr_raw = df_annot_chr.drop(columns=META_COLUMNS, errors='raise')
if np.all(df_annot_chr_raw.dtypes == np.bool):
if np.all(df_annot_chr_raw.dtypes == bool):
is_binary = True
elif np.all([len(np.unique(df_annot_chr_raw[c]))<=2 for c in df_annot_chr_raw.columns]):
is_binary = True
Expand Down
24 changes: 12 additions & 12 deletions finemapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,8 @@ def load_ld_npz(ld_prefix):
def get_bcor_meta(bcor_obj):
df_ld_snps = bcor_obj.getMeta()
df_ld_snps.rename(columns={'rsid':'SNP', 'position':'BP', 'chromosome':'CHR', 'allele1':'A1', 'allele2':'A2'}, inplace=True, errors='raise')
###df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int)
###df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int64)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int64)
return df_ld_snps


Expand Down Expand Up @@ -260,7 +260,7 @@ def sync_ld_sumstats(self, ld_arr, df_ld_snps, allow_missing=False):
df_ld_snps = set_snpid_index(df_ld_snps, allow_swapped_indel_alleles=self.allow_swapped_indel_alleles)

if ld_arr is None:
df_ld = pd.DataFrame(np.zeros(len(df_ld_snps.index), dtype=np.int), index=df_ld_snps.index, columns=['dummy'])
df_ld = pd.DataFrame(np.zeros(len(df_ld_snps.index), dtype=np.int64), index=df_ld_snps.index, columns=['dummy'])
else:
assert ld_arr.shape[0] == df_ld_snps.shape[0]
assert ld_arr.shape[0] == ld_arr.shape[1]
Expand Down Expand Up @@ -352,8 +352,8 @@ def find_cached_ld_file(self, locus_start, locus_end, need_bcor=False):
df_ld_snps = bcor_obj.getMeta()
del bcor_obj
df_ld_snps.rename(columns={'rsid':'SNP', 'position':'BP', 'chromosome':'CHR', 'allele1':'A1', 'allele2':'A2'}, inplace=True, errors='raise')
###df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int)
###df_ld_snps['CHR'] = df_ld_snps['CHR'].astype(np.int64)
df_ld_snps['BP'] = df_ld_snps['BP'].astype(np.int64)
else:
raise IOError('unknown file extension')
df_ld_snps = set_snpid_index(df_ld_snps, allow_swapped_indel_alleles=self.allow_swapped_indel_alleles)
Expand Down Expand Up @@ -495,7 +495,7 @@ def compute_ld_plink(self, locus_start, locus_end, verbose):
df_bim.rename(columns={'snp':'SNP', 'pos':'BP', 'chrom':'CHR', 'a0':'A2', 'a1':'A1'}, inplace=True)
df_bim['A1'] = df_bim['A1'].astype('str')
df_bim['A2'] = df_bim['A2'].astype('str')
df_bim['CHR'] = df_bim['CHR'].astype(np.int)
df_bim['CHR'] = df_bim['CHR'].astype(np.int64)
del df_bim['i']
del df_bim['cm']
bed = bed.T
Expand All @@ -512,10 +512,10 @@ def compute_ld_plink(self, locus_start, locus_end, verbose):
mem_limit = 1
else:
mem_limit = self.memory
chunk_size = np.int((np.float(mem_limit) * 0.8) / bed.shape[0] / 4 * (2**30))
chunk_size = np.int64((np.float64(mem_limit) * 0.8) / bed.shape[0] / 4 * (2**30))
if chunk_size==0: chunk_size=1
if chunk_size > bed.shape[1]: chunk_size = bed.shape[1]
num_chunks = np.int(np.ceil(bed.shape[1] / chunk_size))
num_chunks = np.int64(np.ceil(bed.shape[1] / chunk_size))
if num_chunks>1:
assert chunk_size * (num_chunks-2) < bed.shape[1]-1
if chunk_size * (num_chunks-1) >= bed.shape[1]:
Expand Down Expand Up @@ -893,13 +893,13 @@ def finemap(self, locus_start, locus_end, num_causal_snps, use_prior_causal_prob
df_susie['DISTANCE_FROM_CENTER'] = np.abs(df_susie['BP'] - middle)

#mark causal sets
self.susie_dict = {key:np.array(susie_obj.rx2(key), dtype=np.object) for key in list(susie_obj.names)}
self.susie_dict = {key:np.array(susie_obj.rx2(key), dtype=object) for key in list(susie_obj.names)}
df_susie['CREDIBLE_SET'] = 0
susie_sets = self.susie_dict['sets'][0]
#if type(susie_sets) != self.RNULLType:
try:
for set_i, susie_set in enumerate(susie_sets):
is_in_set = np.zeros(df_susie.shape[0], dtype=np.bool)
is_in_set = np.zeros(df_susie.shape[0], dtype=bool)
is_in_set[np.array(susie_set)-1] = True
is_in_set[df_susie['CREDIBLE_SET']>0] = False
df_susie.loc[is_in_set, 'CREDIBLE_SET'] = set_i+1
Expand Down Expand Up @@ -979,7 +979,7 @@ def finemap(self, locus_start, locus_end, num_causal_snps, use_prior_causal_prob
if ld_file is not None:
raise ValueError('cannot specify an ld file when assuming a single causal SNP per locus')
ld_file = finemap_output_prefix+'.ld'
np.savetxt(ld_file, np.eye(self.df_sumstats_locus.shape[0], dtype=np.int), fmt='%s')
np.savetxt(ld_file, np.eye(self.df_sumstats_locus.shape[0], dtype=np.int64), fmt='%s')
else:
if ld_file is None:
ld_data = self.get_ld_data(locus_start, locus_end, need_bcor=True, verbose=verbose)
Expand Down Expand Up @@ -1016,7 +1016,7 @@ def finemap(self, locus_start, locus_end, num_causal_snps, use_prior_causal_prob

#flip some of the alleles
if num_causal_snps == 1:
is_flipped = np.zeros(self.df_sumstats_locus.shape[0], dtype=np.bool)
is_flipped = np.zeros(self.df_sumstats_locus.shape[0], dtype=bool)
else:
if ld_file.endswith('.bcor'):
bcor_obj = bcor(ld_file)
Expand Down
2 changes: 1 addition & 1 deletion ldsc_polyfun/jackknife.py
Original file line number Diff line number Diff line change
Expand Up @@ -705,7 +705,7 @@ def __init__(self, x, y, n_blocks=None, separators=None, chr_num=None, verbose=T

def _divide_chromosomes_to_sets(self, chr_sizes, num_sets):
chr_order = np.argsort(chr_sizes)[::-1] #np.arange(len(chr_sizes))
chr_assignments = np.zeros(22, dtype=np.int) - 1
chr_assignments = np.zeros(22, dtype=np.int64) - 1
chr_assignments[chr_order[:num_sets]] = np.arange(num_sets)
set_sizes = chr_sizes[chr_order[:num_sets]].copy()
for c_i in chr_order[num_sets : len(chr_sizes)]:
Expand Down
2 changes: 1 addition & 1 deletion ldsc_polyfun/sumstats.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,7 +255,7 @@ def _read_ld_sumstats(args, log, fh, alleles=True, dropna=True):

#keep only requested annotations if --anno was specified
if args.anno is not None:
cols_to_keep = np.zeros(len(ref_ld.columns), dtype=np.bool)
cols_to_keep = np.zeros(len(ref_ld.columns), dtype=bool)
annotations = args.anno.split(',')
is_found1 = np.isin(annotations, ref_ld.columns.str[:-2])
is_found2 = np.isin(annotations, ref_ld.columns.str[:-4])
Expand Down
8 changes: 4 additions & 4 deletions munge_polyfun_sumstats.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def find_df_column(df, strings_to_find, allow_missing=False):
if isinstance(strings_to_find, str):
strings_to_find = [strings_to_find]

is_relevant_col = np.zeros(df.shape[1], dtype=np.bool)
is_relevant_col = np.zeros(df.shape[1], dtype=bool)
for str_to_find in strings_to_find:
is_relevant_col = is_relevant_col | (df.columns.str.upper() == str_to_find.upper())
if np.sum(is_relevant_col)==0:
Expand Down Expand Up @@ -110,7 +110,7 @@ def compute_z(df_sumstats):
def filter_sumstats(df_sumstats, min_info_score=None, min_maf=None, remove_strand_ambig=False, keep_hla=False):

logging.info('%d SNPs are in the sumstats file'%(df_sumstats.shape[0]))
is_good_snp = np.ones(df_sumstats.shape[0], dtype=np.bool)
is_good_snp = np.ones(df_sumstats.shape[0], dtype=bool)

#remove 'bad' BOLT-LMM SNPs
if 'CHISQ_BOLT_LMM' in df_sumstats.columns:
Expand Down Expand Up @@ -142,7 +142,7 @@ def filter_sumstats(df_sumstats, min_info_score=None, min_maf=None, remove_stran

#find strand ambiguous summary statistics
if remove_strand_ambig:
is_strand_ambig = np.zeros(df_sumstats.shape[0], dtype=np.bool)
is_strand_ambig = np.zeros(df_sumstats.shape[0], dtype=bool)
for ambig_pairs in [('A', 'T'), ('T', 'A'), ('C', 'G'), ('G', 'C')]:
is_strand_ambig = is_strand_ambig | ((df_sumstats['A2']==ambig_pairs[0]) & (df_sumstats['A1']==ambig_pairs[1]))
is_good_snp = is_good_snp & (~is_strand_ambig)
Expand Down Expand Up @@ -171,7 +171,7 @@ def filter_sumstats(df_sumstats, min_info_score=None, min_maf=None, remove_stran

def compute_casecontrol_neff(df_sumstats):
logging.info('Computing the effective sample size for case-control data...')
Neff = (4.0 / (1.0/df_sumstats['N_CASES'] + 1.0/df_sumstats['N_CONTROLS'])).astype(np.int)
Neff = (4.0 / (1.0/df_sumstats['N_CASES'] + 1.0/df_sumstats['N_CONTROLS'])).astype(np.int64)
return Neff


Expand Down
4 changes: 2 additions & 2 deletions polyfun.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,7 +405,7 @@ def create_df_bins(self, bin_sizes, df_snpvar, df_snpvar_sorted=None, min_bin_si
ind=0
df_bins = pd.DataFrame(index=df_snpvar_sorted.index)
for bin_i, bin_size in enumerate(bin_sizes):
snpvar_bin = np.zeros(df_bins.shape[0], dtype=np.bool)
snpvar_bin = np.zeros(df_bins.shape[0], dtype=bool)
snpvar_bin[ind : ind+bin_size] = True
df_bins['snpvar_bin%d'%(len(bin_sizes) - bin_i)] = snpvar_bin
ind += bin_size
Expand Down Expand Up @@ -462,7 +462,7 @@ def partition_snps_Ckmedian(self, args, use_ridge):
seg_obj = median_seg_func(df_snpvar_sorted.values, k=np.array([5,30]))
else:
seg_obj = median_seg_func(df_snpvar_sorted.values, k=args.num_bins)
bin_sizes = np.array(seg_obj.rx2('size')).astype(np.int)
bin_sizes = np.array(seg_obj.rx2('size')).astype(np.int64)
num_bins = len(bin_sizes)
logging.info('Ckmedian.1d.dp partitioned SNPs into %d bins'%(num_bins))

Expand Down
6 changes: 3 additions & 3 deletions polyloc.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,16 +204,16 @@ def compute_Mp(self, p, cumsum_prop_h2, cumnum_binsize):
num_jk = cumsum_prop_h2.shape[1]

last_bin_index = np.argmax(cumsum_prop_h2 >= p, axis=0)
num_snps_bin1 = np.zeros(num_jk, dtype=np.int)
num_snps_bin1 = np.zeros(num_jk, dtype=np.int64)
h2_bin1 = np.zeros(num_jk)
num_snps_bin1[last_bin_index != 0] = cumnum_binsize[last_bin_index[last_bin_index != 0] - 1]
h2_bin1[last_bin_index != 0] = cumsum_prop_h2[last_bin_index[last_bin_index != 0] - 1, np.arange(num_jk)[last_bin_index != 0]]

num_snps_bin2 = cumnum_binsize[last_bin_index]
h2_bin2 = cumsum_prop_h2[last_bin_index, np.arange(num_jk)]
slope = (num_snps_bin2-num_snps_bin1).astype(np.float) / (h2_bin2-h2_bin1)
slope = (num_snps_bin2-num_snps_bin1).astype(np.float64) / (h2_bin2-h2_bin1)
assert not np.any(np.isnan(slope))
Mp = np.ceil(num_snps_bin1 + slope * (p - h2_bin1)).astype(np.int)
Mp = np.ceil(num_snps_bin1 + slope * (p - h2_bin1)).astype(np.int64)

return Mp

Expand Down
6 changes: 3 additions & 3 deletions polypred.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def create_plink_range_file(df_betas, temp_dir, num_jk=200):
scores_file = os.path.join(temp_dir, 'snp_scores.txt')
separators = np.floor(np.linspace(0, df_betas.shape[0], num_jk+1)).astype(int)
df_betas['score'] = 0
is_in_range = np.zeros(df_betas.shape[0], dtype=np.bool)
is_in_range = np.zeros(df_betas.shape[0], dtype=bool)
for i in range(len(separators)-1):
is_in_range[separators[i] : separators[i+1]] = True
df_betas.loc[is_in_range, 'score'] = i+1.5
Expand Down Expand Up @@ -176,7 +176,7 @@ def load_betas_files(betas_file, verbose=True):
df_betas.rename(columns={'sid':'SNP', 'nt1':'A1', 'nt2':'A2', 'BETA_MEAN':'BETA', 'ldpred_inf_beta':'BETA', 'chrom':'CHR', 'Chrom':'CHR', 'pos':'BP'}, inplace=True, errors='ignore')
if not is_numeric_dtype(df_betas['CHR']):
if df_betas['CHR'].str.startswith('chrom_').all():
df_betas['CHR'] = df_betas['CHR'].str[6:].astype(np.int)
df_betas['CHR'] = df_betas['CHR'].str[6:].astype(np.int64)
else:
raise ValueError('unknown CHR format')
df_betas.rename(columns={'BETA_joint':'BETA', 'ALLELE1':'A1', 'ALLELE0':'A2', 'beta_mean':'BETA', 'MAF_BOLT':'A1Frq', 'Name':'SNP', 'A1Effect':'BETA', 'Name':'SNP', 'Chrom':'CHR', 'Position':'BP', 'beta':'BETA'}, inplace=True, errors='ignore')
Expand Down Expand Up @@ -284,7 +284,7 @@ def estimate_mixing_weights(args):
float(df_pheno['PHENO'].iloc[0])
except:
df_pheno = df_pheno.iloc[1:]
df_pheno['PHENO'] = df_pheno['PHENO'].astype(np.float)
df_pheno['PHENO'] = df_pheno['PHENO'].astype(np.float64)
if np.any(df_pheno.index.duplicated()):
raise ValueError('duplicate ids found in %s'%(args.pheno))

Expand Down

0 comments on commit 398d1a9

Please sign in to comment.