Skip to content
This repository has been archived by the owner on Jan 13, 2025. It is now read-only.

Commit

Permalink
test
Browse files Browse the repository at this point in the history
  • Loading branch information
Tom-van-Woudenberg committed Dec 10, 2024
1 parent 78e3a83 commit eedab8f
Show file tree
Hide file tree
Showing 3 changed files with 117 additions and 154 deletions.
4 changes: 4 additions & 0 deletions book/_config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,10 @@ sphinx:
chtml: {
mtextInheritFont: true # To typeset text within math prettier
}
nb_custom_formats:
.py:
- jupytext.reads
- fmt: py
local_extensions:
apastyle: _ext/
bracket_citation_style: _ext/
Expand Down
154 changes: 0 additions & 154 deletions book/week_13/session_1/intro.ipynb

This file was deleted.

113 changes: 113 additions & 0 deletions book/week_13/session_1/intro.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
# ---
# jupyter:
# jupytext:
# cell_markers: '"""'
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.1
# kernelspec:
# display_name: base
# language: python
# name: python3
# ---

# %% [markdown]
r"""
```{index} Transformations; Class exercise using analytical formulas
```
(lesson13.1)=
# Lesson November 25th
During today's lesson you'll work on a complex exercise on the topic of the Transforming tensors. Please ask your questions regarding the [homework](homework13.1) as well!
## Exercise Transforming tensors
Given is the following structure and cross-section:
```{figure} intro_data/structure.svg
:align: center
```
1. Find the relevant cross-sectional properties.
2. Find the normal and shear stresses just below $\text{G}$, in $\text{H}$, in $\text{I}$ and just right of $\text{C}$ in cross-section $\text{A}$.
3. Find the principal values of the stresses in the points just below $\text{G}$, in $\text{H}$, in $\text{I}$ and just right of $\text{C}$ in cross-section $\text{A}$.
````{admonition} Solution assignment 1
:class: tip, dropdown
Normal force centre is given by:
```{figure} intro_data/NC.svg
:align: center
```
- $A \approx 17500 \text{ mm}^2$
- $I_{zz} \approx 655 \cdot 10^6 \text{ mm}^4$
````
````{admonition} Solution assignment 2
:class: tip, dropdown
- $\sigma_\text{just below G} = +6.73 \text{ MPa}$
- $\tau_\text{just below G} = +0.164 \text{ MPa}$
- $\sigma_\text{H} = +6.73 \text{ MPa}$
- $\tau_\text{H} = 0 \text{ MPa}$
- $\sigma_\text{I} = -2 \text{ MPa}$
- $\tau_\text{I} = +0.35 \text{ MPa}$
- $\sigma_\text{just right of C} = -8.53 \text{ MPa}$
- $\tau_\text{just right of C} = -0.12 \text{ MPa}$
````
````{admonition} Solution assignment 3
:class: tip, dropdown
- $\sigma_\text{1, just below G} = +6.73 \text{ MPa}$
- $\sigma_\text{2, just below G} = -0.0040 \text{ MPa}$
- $\sigma_\text{1, H} = +6.73 \text{ MPa}$
- $\sigma_\text{2, H} = 0 \text{ MPa}$
- $\sigma_\text{1, I} = 0.59 \text{ MPa}$
- $\sigma_\text{2, I} = -2.06 \text{ MPa}$
- $\sigma_\text{1, just right of C} = 0.0018 \text{ MPa}$
- $\sigma_\text{2, just right of C} = -8.5 \text{ MPa}$
````
Test of adding more text
"""

# %% tags=["remove-cell"]
Izz = 655e6

tau_G = -3e3 * -250*10*286 / 20 / Izz
print(tau_G)

tau_C = -3e3 * -250*20*(286-500) / 40 / Izz
print(tau_C)

sigma_G = +6.73
tau_G = -tau_G
sigma_G_1 = 1/2 * (sigma_G + 0) + ((1/2 * (sigma_G + 0))**2 + tau_G**2)**0.5
sigma_G_2 = 1/2 * (sigma_G + 0) - ((1/2 * (sigma_G + 0))**2 + tau_G**2)**0.5
print(sigma_G_1, sigma_G_2)

sigma_H = +6.73
tau_G = 0
sigma_H_1 = 1/2 * (sigma_H + 0) + ((1/2 * (sigma_H + 0))**2 + tau_G**2)**0.5
sigma_H_2 = 1/2 * (sigma_H + 0) - ((1/2 * (sigma_H + 0))**2 + tau_G**2)**0.5
print(sigma_H_1, sigma_H_2)

sigma_I = -2
tau_I = +0.35
sigma_I_1 = 1/2 * (sigma_I + 0) + ((1/2 * (sigma_I + 0))**2 + tau_I**2)**0.5
sigma_I_2 = 1/2 * (sigma_I + 0) - ((1/2 * (sigma_I + 0))**2 + tau_I**2)**0.5
print(sigma_I_1, sigma_I_2)

sigma_C = -8.53
tau_C = -tau_C
sigma_C_1 = 1/2 * (sigma_C + 0) + ((1/2 * (sigma_C))**2 + tau_C**2)**0.5
sigma_C_2 = 1/2 * (sigma_C + 0) - ((1/2 * (sigma_C))**2 + tau_C**2)**0.5
print(sigma_C_1, sigma_C_2)

0 comments on commit eedab8f

Please sign in to comment.