Skip to content

Commit

Permalink
Merge pull request #210 from TileDB-Inc/sethshelnutt/sc-31839/tensorf…
Browse files Browse the repository at this point in the history
…lowkerastiledbmodel-doesn-t-load

Update to support tensorflow >= 2.11
  • Loading branch information
Shelnutt2 authored Jul 24, 2023
2 parents 10c8509 + aff195f commit a40a555
Show file tree
Hide file tree
Showing 3 changed files with 116 additions and 20 deletions.
9 changes: 8 additions & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,17 @@ jobs:
strategy:
fail-fast: false
matrix:
python-verison: ["3.7"]
ml-deps:
- "torch==1.11.0+cpu torchvision==0.12.0+cpu torchdata==0.3.0 tensorflow-cpu==2.8.1"
- "torch==1.12.1+cpu torchvision==0.13.1+cpu torchdata==0.4.1 tensorflow-cpu==2.9.1"
- "torch==1.13.0+cpu torchvision==0.14.0+cpu torchdata==0.5.0 tensorflow-cpu==2.10.0"
- "torch==1.13.0+cpu torchvision==0.14.0+cpu torchdata==0.5.0 tensorflow-cpu==2.11.0"
include:
- ml-deps: "torch==1.13.0+cpu torchvision==0.14.0+cpu torchdata==0.5.0 tensorflow-cpu==2.12.0"
python-version: "3.9"
- ml-deps: "torch==1.13.0+cpu torchvision==0.14.0+cpu torchdata==0.5.0 tensorflow-cpu==2.13.0"
python-version: "3.9"

env:
run_coverage: ${{ github.ref == 'refs/heads/master' }}
Expand All @@ -23,7 +30,7 @@ jobs:
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: ${{ matrix.python-version }}

- name: Cache dependencies
uses: actions/cache@v3
Expand Down
63 changes: 54 additions & 9 deletions tests/models/test_tensorflow_keras_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,16 @@
get_small_sequential_mlp,
)
except ImportError:
from keras.testing_utils import get_small_functional_mlp, get_small_sequential_mlp
try:
from keras.testing_utils import (
get_small_functional_mlp,
get_small_sequential_mlp,
)
except ImportError:
from keras.src.testing_infra.test_utils import (
get_small_functional_mlp,
get_small_sequential_mlp,
)

# Suppress all Tensorflow messages
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
Expand Down Expand Up @@ -166,8 +175,20 @@ def test_save_model_to_tiledb_array_weights(
data = np.random.rand(100, 3)

if optimizer:
model_opt_weights = batch_get_value(model.optimizer.weights)
loaded_opt_weights = batch_get_value(loaded_model.optimizer.weights)
if hasattr(model.optimizer, "weights"):
model_opt_weights = tf.keras.backend.batch_get_value(
model.optimizer.weights
)
else:
model_opt_weights = [var.numpy() for var in model.optimizer.variables()]
if hasattr(loaded_model.optimizer, "weights"):
loaded_opt_weights = tf.keras.backend.batch_get_value(
loaded_model.optimizer.weights
)
else:
loaded_opt_weights = [
var.numpy() for var in loaded_model.optimizer.variables()
]

# Assert optimizer weights are equal
for weight_model, weight_loaded_model in zip(
Expand Down Expand Up @@ -209,8 +230,20 @@ def test_save_load_with_dense_features(self, tmpdir, loss, optimizer, metrics):
tiledb_model_obj.save(include_optimizer=True)
loaded_model = tiledb_model_obj.load(compile_model=True)

model_opt_weights = batch_get_value(model.optimizer.weights)
loaded_opt_weights = batch_get_value(loaded_model.optimizer.weights)
if hasattr(model.optimizer, "weights"):
model_opt_weights = tf.keras.backend.batch_get_value(
model.optimizer.weights
)
else:
model_opt_weights = [var.numpy() for var in model.optimizer.variables()]
if hasattr(loaded_model.optimizer, "weights"):
loaded_opt_weights = tf.keras.backend.batch_get_value(
loaded_model.optimizer.weights
)
else:
loaded_opt_weights = [
var.numpy() for var in loaded_model.optimizer.variables()
]

# Assert optimizer weights are equal
for weight_model, weight_loaded_model in zip(
Expand Down Expand Up @@ -260,8 +293,20 @@ def test_save_load_with_sequence_features(self, tmpdir, loss, optimizer, metrics
tiledb_model_obj.save(include_optimizer=True)
loaded_model = tiledb_model_obj.load(compile_model=True)

model_opt_weights = batch_get_value(model.optimizer.weights)
loaded_opt_weights = batch_get_value(loaded_model.optimizer.weights)
if hasattr(model.optimizer, "weights"):
model_opt_weights = tf.keras.backend.batch_get_value(
model.optimizer.weights
)
else:
model_opt_weights = [var.numpy() for var in model.optimizer.variables()]
if hasattr(loaded_model.optimizer, "weights"):
loaded_opt_weights = tf.keras.backend.batch_get_value(
loaded_model.optimizer.weights
)
else:
loaded_opt_weights = [
var.numpy() for var in loaded_model.optimizer.variables()
]

# Assert optimizer weights are equal
for weight_model, weight_loaded_model in zip(
Expand All @@ -277,7 +322,7 @@ def test_save_load_with_sequence_features(self, tmpdir, loss, optimizer, metrics
indices_a[:, 0] = np.arange(10)
inputs_a = tf.SparseTensor(indices_a, values_a, (batch_size, timesteps, 1))

values_b = np.zeros(10, dtype=np.str)
values_b = np.zeros(10, dtype=str)
indices_b = np.zeros((10, 3), dtype=np.int64)
indices_b[:, 0] = np.arange(10)
inputs_b = tf.SparseTensor(indices_b, values_b, (batch_size, timesteps, 1))
Expand Down Expand Up @@ -310,7 +355,7 @@ def test_functional_model_save_load_with_custom_loss_and_metric(self, tmpdir):
tiledb_uri = os.path.join(tmpdir, "model_array")
tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri, model=model)
tiledb_model_obj.save(include_optimizer=True)
loaded_model = tiledb_model_obj.load(compile_model=True)
loaded_model = tiledb_model_obj.load(compile_model=True, safe_mode=False)

# Assert all evaluation results are the same.
assert all(
Expand Down
64 changes: 54 additions & 10 deletions tiledb/ml/models/tensorflow_keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,39 @@

from ._base import Meta, TileDBArtifact, Timestamp

FunctionalOrSequential = (keras.models.Functional, keras.models.Sequential)
TFOptimizer = keras.optimizers.TFOptimizer
get_json_type = keras.saving.saved_model.json_utils.get_json_type
preprocess_weights_for_loading = keras.saving.hdf5_format.preprocess_weights_for_loading
saving_utils = keras.saving.saving_utils
keras_major, keras_minor, keras_patch = keras.__version__.split(".")
FunctionalOrSequential = keras.models.Sequential
# Handle keras <=v2.10
if int(keras_major) <= 2 and int(keras_minor) <= 10:
FunctionalOrSequential = (keras.models.Functional, keras.models.Sequential)
TFOptimizer = keras.optimizers.TFOptimizer
get_json_type = keras.saving.saved_model.json_utils.get_json_type
preprocess_weights_for_loading = (
keras.saving.hdf5_format.preprocess_weights_for_loading
)
saving_utils = keras.saving.saving_utils
# Handle keras >=v2.11
elif int(keras_major) <= 2 and int(keras_minor) <= 12:
FunctionalOrSequential = (keras.models.Functional, keras.models.Sequential)
TFOptimizer = tf.keras.optimizers.legacy.Optimizer
get_json_type = keras.saving.legacy.saved_model.json_utils.get_json_type
preprocess_weights_for_loading = (
keras.saving.legacy.hdf5_format.preprocess_weights_for_loading
)
saving_utils = keras.saving.legacy.saving_utils
else:
from keras.src.saving.serialization_lib import SafeModeScope

FunctionalOrSequential = (
keras.src.engine.functional.Functional,
keras.src.engine.sequential.Sequential,
)
TFOptimizer = tf.keras.optimizers.legacy.Optimizer
get_json_type = keras.src.saving.legacy.saved_model.json_utils.get_json_type
preprocess_weights_for_loading = (
keras.src.saving.legacy.hdf5_format.preprocess_weights_for_loading
)
saving_utils = keras.src.saving.legacy.saving_utils


class TensorflowKerasTileDBModel(TileDBArtifact[tf.keras.Model]):
Expand Down Expand Up @@ -59,7 +87,7 @@ def save(

if not isinstance(self.artifact, FunctionalOrSequential):
raise RuntimeError(
"Subclassed Models (Custom Layers) not supported at the moment."
f"Subclassed Models (Custom Layers) for {type(self.artifact)} not supported at the moment."
)

# Used in this format only when model is Functional or Sequential
Expand Down Expand Up @@ -109,6 +137,7 @@ def load(
custom_objects: Optional[Mapping[str, Any]] = None,
input_shape: Optional[Tuple[int, ...]] = None,
callback: bool = False,
safe_mode: Optional[bool] = None,
) -> tf.keras.Model:
"""
Load switch, i.e, decide between __load (TileDB-ML<=0.8.0) or __load_v2 (TileDB-ML>0.8.0).
Expand All @@ -129,7 +158,7 @@ def load(
model_array, compile_model, callback, custom_objects
)
else:
return self.__load(model_array, compile_model, callback)
return self.__load(model_array, compile_model, callback, safe_mode)

def __load_legacy(
self,
Expand Down Expand Up @@ -200,13 +229,25 @@ def __load_legacy(
return model

def __load(
self, model_array: tiledb.Array, compile_model: bool, callback: bool
self,
model_array: tiledb.Array,
compile_model: bool,
callback: bool,
safe_mode: Optional[bool],
) -> tf.keras.Model:
model_config = json.loads(model_array.meta["model_config"])
model_class = model_config["class_name"]

cls = tf.keras.Sequential if model_class == "Sequential" else tf.keras.Model
model = cls.from_config(model_config["config"])

if int(keras_major) <= 2 and int(keras_minor) >= 13:
if safe_mode is not None:
with SafeModeScope(safe_mode=safe_mode):
model = cls.from_config(model_config["config"])
else:
model = cls.from_config(model_config["config"])
else:
model = cls.from_config(model_config["config"])
model_weights = self._get_model_param(model_array, "model")
model.set_weights(model_weights)

Expand Down Expand Up @@ -266,6 +307,9 @@ def _serialize_optimizer_weights(
assert self.artifact
optimizer = self.artifact.optimizer
if optimizer and not isinstance(optimizer, TFOptimizer):
optimizer_weights = tf.keras.backend.batch_get_value(optimizer.weights)
if hasattr(optimizer, "weights"):
optimizer_weights = tf.keras.backend.batch_get_value(optimizer.weights)
else:
optimizer_weights = [var.numpy() for var in optimizer.variables()]
return pickle.dumps(optimizer_weights, protocol=4)
return b""

0 comments on commit a40a555

Please sign in to comment.