Title: Visualization of Functional Enrichment Result
Version: 1.0.0
Author: Jin wang ([email protected])
Maintainer: Jin wang ([email protected])
Description: The GEO Cancer Analysis Suite (GCAS) is a versatile R package designed for analyzing and visualizing gene expression data in cancer research. GCAS allows for the comparison of gene expression between normal and tumor samples, correlation analysis, immune infiltration analysis, differential expression analysis, co-expression analysis, and enrichment analysis. It includes a Shiny app for interactive visualization and can also be used directly within the R environment for advanced scripting. GCAS is ideal for researchers, clinicians, and bioinformaticians seeking to explore cancer genomics data efficiently and effectively.
Depends: R (>= 3.5.0)
Imports: RobustRankAggreg, VennDiagram, digest, dplyr, ggpubr, ggrepel, httr, jsonlite, meta, psych, shiny, stringr, sva, tibble, RColorBrewer, clusterProfiler, dplyr, ggrepel, grid, ggplot2
Encoding: UTF-8
URL: https://github.com/WangJin93/GCAS
Bug Reports: https://github.com/WangJin93/GCAS/issues
License: MIT License
remotes::install_github("WangJin93/GCAS")
Description
This function summarizes the sample counts and pairing status for datasets based on a specified tumor subtype.
Usage
datasets_summary(tumor_subtype = "NSCLC")
Arguments
tumor_subtype | A character string specifying the tumor subtype to filter the datasets. Default is "NSCLC". |
---|
Value
A data frame summarizing the number of Normal, Tumor, and Premalignant samples, as well as the pairing status for each dataset.
Examples
dt_sum <- datasets_summary("NSCLC")
Description
Retrieve expression data for specified genes from given datasets.
Usage
get_expr_data(datasets, genes)
Arguments
datasets | A character vector of dataset identifiers. |
---|---|
genes | A character vector of gene identifiers. |
Value
A dataframe containing expression data for the specified genes from the given datasets.
Examples
results <- get_expr_data(datasets = "GSE74706", genes = c("GAPDH","TNS1"))
results <- get_expr_data(datasets = c("GSE62113","GSE74706"), genes = "GAPDH")
results <- get_expr_data(datasets = c("GSE62113","GSE74706"), genes = c("SIRPA","CTLA4","TIGIT","LAG3","VSIR","LILRB2","SIGLEC7","HAVCR2","LILRB4","PDCD1","BTLA"))
Description
Visualizing the different expression of mRNA expression data between Tumor and Normal tissues in GEO database.
Usage
viz_TvsN(
df,
df_type = c("single", "multi_gene", "multi_set"),
tumor_subtype = NULL,
Show.P.Value = TRUE,
Show.P.label = TRUE,
Method = "t.test",
Values = c("#00AFBB", "#FC4E07"),
Show.n = TRUE,
Show.n.location = "default"
)
Arguments
df | Gene expression data obtained from get_expr_data(). |
---|---|
df_type | The type of gene expression data, one Value of "single","multi_gene", and "multi_set". |
Show.P.Value | Whether to display the results of differential analysis, default TRUE. |
Show.P.label | Whether to display significance markers for differential analysis, default TRUE. |
Method | Methods of differential analysis, "t.test" or "limma", default "t.test". |
Values | Color palette for normal and tumor groups. Default c("#00AFBB", "#FC4E07"). |
Show.n | Display sample size. |
Show.n.location | Y-axis position displayed for sample size. |
Examples
df_single <- get_expr_data(datasets = "GSE27262",genes = c("TP53"))
df_multi_gene <- get_expr_data(datasets = "GSE27262",genes = c("TP53","TNS1"))
df_multi_set <- get_expr_data(datasets = c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113"), genes = "GAPDH")
viz_TvsN(df_single,df_type = "single")
viz_TvsN(df_multi_gene,df_type = "multi_gene",tumor_subtype ="LC")
viz_TvsN(df_multi_set,df_type = "multi_set")
Description
Compute summary statistics (mean, standard deviation, etc.) and perform hypothesis testing (t-test or Wilcoxon test) for gene expression data across different datasets.
Usage
data_summary(df, tumor_subtype = NULL, method = "t.test")
Arguments
df | A dataframe containing gene expression data, with columns: 'dataset', 'subtype', and the gene expression Values. |
---|---|
tumor_subtype | A character string specifying the tumor subtype to be analyzed. Default is NULL, which means all tumor subtypes will be included. |
method | A character string specifying the method for hypothesis testing. Options are "t.test" for t-test and "wilcox" for Wilcoxon test. Default is "t.test". |
Value
A dataframe with summary statistics and p-Values for each dataset.
Examples
df <- get_expr_data(datasets = c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113"), genes = "GAPDH")
results <- data_summary(df, tumor_subtype = "LUAD")
Description
Plotting volcano plot for DEGs between tumor and normal samples in CPTAC datasets.
This function performs a meta-analysis on multiple datasets and generates a forest plot. It also tests for publication bias.
Usage
plot_meta_forest(results, method = "wilcox", k.min = 10)
Arguments
results | Data frame. The results data frame containing columns for dataset, n_Tumor, mean_Tumor, sd_Tumor, n_Normal, mean_Normal, and sd_Normal. |
---|---|
method | Character. The statistical method to use (default is "wilcox"). |
k.min | Integer. Minimum number of studies for bias test (default is 7). |
cohort | Data cohort, for example, "LUAD_APOLLO", "LUAD_CPTAC". |
data_input | Expression data obtained from get_expr_data() function. |
Value
A forest plot object.
Examples
df <- get_expr_data(datasets = c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113"), genes = "GAPDH")
results <- data_summary(df, tumor_subtype = "LUAD")
plot_meta_forest(results)
Description
This function generates a heatmap of log fold changes (logFC) for a gene across different datasets. It includes significance annotations based on p-Values.
Usage
plot_logFC_heatmap(results, direction = "horizontal")
Arguments
results | Data frame. The results data frame containing columns for dataset, gene, logFC, and p.Value. |
---|---|
direction | Ploting direction, horizontal or vertical. |
Value
A ggplot object representing the heatmap.
Examples
df <- get_expr_data(datasets = c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113"), genes = "GAPDH")
results <- data_summary(df, tumor_subtype = "LUAD")
heatmap <- plot_logFC_heatmap(results)
print(heatmap)
Description
This function generates a scatter of log fold changes (logFC) for a gene across different datasets. It includes significance annotations based on p-Values.
Usage
plot_logFC_scatter(
results,
p.cut = 0.05,
logFC.cut = 1,
colors = c("blue", "grey20", "red")
)
Arguments
results | Data frame. The results data frame containing columns for dataset, gene, logFC, and p.Value. |
---|---|
p.cut | Numeric. The cutoff for adjusted p-Value to determine significance. Default is 0.05. |
logFC.cut | Numeric. The cutoff for log fold change to determine significance. Default is 1. |
colors | A vector of color panel, default c("blue", "grey20", "red"). |
Value
A ggplot object representing the scatter.
Examples
df <- get_expr_data(datasets = c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113"), genes = "GAPDH")
results <- data_summary(df, tumor_subtype = "LUAD")
scatter <- plot_logFC_scatter(results, logFC.cut = 0.5, colors = c("blue","grey20", "red"))
print(scatter)
Description
Perform correlation analysis of the mRNA/protein expression data in CPTAC database.
Usage
cor_cancer_genelist(
dataset = "GSE62113",
id1 = "STAT3",
id2 = c("TNS1", "TP53"),
tumor_subtype = NULL,
sample_type = c("Tumor", "Normal"),
cor_method = "pearson"
)
Arguments
dataset | Dataset name. Use 'dataset$Abbre' to get all datasets. |
---|---|
id1 | Gene symbol, you can input one gene symbol. |
id2 | Gene symbols, you can input one or multiple symbols. |
tumor_subtype | Tumor subtype used for correlation analysis, default is NULL. |
sample_type | Sample type used for correlation analysis, default all types: c("Tumor", "Normal"). |
cor_method | Method for correlation analysis, default "pearson". |
Value
A list containing the correlation results and the merged data.
Examples
results <- cor_cancer_genelist(dataset = "GSE62113",
id1 = "STAT3",tumor_subtype = "LC",
id2 = c("TNS1", "TP53"),
sample_type = c("Tumor", "Normal"),
cor_method = "pearson")
Description
Calculate the correlation between target gene expression and anti-tumor drug sensitivity in multiple datasets.
Usage
cor_gcas_drug(df, cor_method = "pearson", Target.pathway = c("Cell cycle"))
Arguments
df | The expression data of the target gene in multiple datasets, obtained by the get_expr_data() function. |
---|---|
cor_method | Method for correlation analysis, default "pearson". |
Target.pathway | The signaling pathways of anti-tumor drug targets, default "Cell cycle". Use "drug_info" to get the detailed information of these drugs. |
Examples
dataset <- c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210",
"GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072",
"GSE74706","GSE18842","GSE62113")
df <- get_expr_data(genes = "TNS1", datasets = dataset)
result <- cor_gcas_drug(df, Target.pathway = c("Cell cycle"))
Description
Perform correlation analysis of the expression data in multiple datasets.
Usage
cor_gcas_genelist(
df,
geneset_data,
tumor_subtype = NULL,
sample_type = c("Tumor", "Normal"),
cor_method = "pearson"
)
Arguments
df | The expression data of the target gene in multiple datasets, obtained by the get_expr_data() function. |
---|---|
geneset_data | The expression data of a genelist in multiple datasets, obtained by the get_expr_data() function. |
tumor_subtype | Tumor subtype used for correlation analysis, default is NULL. |
sample_type | Sample type used for correlation analysis, default all types: c("Tumor", "Normal"). |
cor_method | Method for correlation analysis, default "pearson". |
Examples
genelist <- c("SIRPA","CTLA4","TIGIT","LAG3","VSIR","LILRB2","SIGLEC7","HAVCR2","LILRB4","PDCD1","BTLA")
dataset <- c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113")
df <- get_expr_data(genes = "TNS1",datasets = dataset)
geneset_data <- get_expr_data(genes = genelist ,datasets = dataset)
result <- cor_gcas_genelist(df, geneset_data, sample_type = c("Tumor"))
Description
Calculate the correlation between target gene expression and immune cells infiltration in multiple datasets.
Usage
cor_gcas_TIL(df, cor_method = "spearman", TIL_type = "TIMER")
Arguments
df | The expression data of the target gene in multiple datasets, obtained by the get_expr_data() function. |
---|---|
cor_method | Method for correlation analysis, default "spearman". |
TIL_type | Algorithm for calculating immune cell infiltration, default "TIMER". |
Examples
dataset <- c("GSE27262", "GSE7670", "GSE19188", "GSE19804", "GSE30219",
"GSE31210", "GSE32665", "GSE32863", "GSE43458", "GSE46539",
"GSE75037", "GSE10072", "GSE74706", "GSE18842", "GSE62113")
df <- get_expr_data(genes = "TNS1", datasets = dataset)
result <- cor_gcas_TIL(df, cor_method = "spearman", TIL_type = "TIMER")
Description
Presenting correlation analysis results using heat maps based on ggplot2.
Usage
viz_cor_heatmap(r, p)
Arguments
r | The correlation coefficient matrix r of the correlation analysis results obtained from the functions cor_pancancer_genelist(), cor_pancancer_TIL(), and cor_pancancer_drug(). |
---|---|
p | The P-Value matrix p of the correlation analysis results obtained from the functions cor_pancancer_genelist(), cor_pancancer_TIL(), and cor_pancancer_drug(). |
Examples
genelist <- c("SIRPA","CTLA4","TIGIT","LAG3","VSIR","LILRB2","SIGLEC7","HAVCR2","LILRB4","PDCD1","BTLA")
dataset <- c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113")
df <- get_expr_data(genes = "TNS1", datasets = dataset)
geneset_data <- get_expr_data(genes = genelist ,datasets = dataset)
result <- cor_gcas_genelist(df, geneset_data, sample_type = c("Tumor"))
viz_cor_heatmap(result$r, result$p)
Description
Plotting volcano plot for the correlation analysis of a specific gene from the result of cor_gcas_genelist().
Usage
viz_cor_volcano(
cor_result,
item,
p.cut = 0.05,
r.cut = 0.3,
colors = c("blue", "grey20", "red")
)
Arguments
cor_result | DataFrame. The results from cor_gcas_genelist analysis. |
---|---|
item | Character. Gene symbol or drug name or immune cell. |
p.cut | Numeric. The cutoff for adjusted p-Value to determine significance. Default is 0.05. |
r.cut | Numeric. The cutoff for log fold change to determine significance. Default is 0.3. |
colors | A vector of color panel, default c("blue", "grey20", "red"). |
Value
A ggplot2 object representing the volcano plot.
Examples
genelist <- c("SIRPA","CTLA4","TIGIT","LAG3","VSIR","LILRB2","SIGLEC7","HAVCR2","LILRB4","PDCD1","BTLA")
dataset <- c("GSE27262","GSE7670","GSE19188","GSE19804","GSE30219","GSE31210","GSE32665","GSE32863","GSE43458","GSE46539","GSE75037","GSE10072","GSE74706","GSE18842","GSE62113")
df <- get_expr_data(genes = "TNS1",datasets = dataset)
geneset_data <- get_expr_data(genes = genelist ,datasets = dataset)
cor_result <- cor_gcas_genelist(df, geneset_data, sample_type = c("Tumor"))
viz_cor_volcano(cor_result, "LILRB4", p.cut = 0.5, r.cut = 0.1,colors = c("blue" ,"grey20", "red"))
Description
Scatter plot with sample size (n), correlation coefficient (r) and p Value (p.Value).
Usage
viz_corplot(
data,
a,
b,
method = "pearson",
x_lab = " relative expression",
y_lab = " relative expression"
)
Arguments
data | A gene expression dataset with at least two genes included, rows represent samples, and columns represent gene expression in the matrix. |
---|---|
a | Gene A |
b | Gene B |
method | Method for correlation analysis, "pearson" or "spearman". |
x_lab | X-axis label. |
y_lab | Y-axis label. |
Description
Retrieve GEO expression datasets and sample information from the OSF repository.
Usage
get_OSF_data(table = "GSE19188", action = "geo_data")
Arguments
table | A character string specifying the GEO dataset identifier (e.g., "GSE19188"). |
---|---|
action | A character string specifying the action, either "geo_data" to retrieve the expression data or "sample_info" to retrieve the sample information. |
Value
A data frame containing the requested data.
Examples
df <- get_OSF_data(table = "GSE74706", action = "sample_info")
df2 <- get_OSF_data(table = "GSE74706", action = "geo_data")
Description
Perform differential expression gene analysis on a given dataset.
Usage
DEGs_analysis(df, tumor_subtype = NULL, ...)
Arguments
df | A dataframe containing gene expression data with sample IDs as columns. |
---|---|
tumor_subtype | A character vector specifying the tumor subtypes to be analyzed. Default is NULL, which means all tumor subtypes will be included. |
... | Additional Arguments passed to 'lmFit', 'contrasts.fit', and 'eBayes'. |
Value
A dataframe with DEG analysis results, including log fold changes and p-Values.
Examples
df <- get_OSF_data(table = "GSE74706", action = "geo_data")
results <- DEGs_analysis(df, tumor_subtype = c("NSCLC"))
Description
Plotting volcano plot for DEGs between tumor and normal samples in CPTAC datasets.
Usage
plot_volcano(
results,
p.cut = 0.05,
logFC.cut = 1,
show.top = FALSE,
show.labels = NULL,
colors = c("blue", "grey20", "red")
)
Arguments
results | DataFrame. The results from DEGs analysis containing columns 'adj.P.Val', 'P.Value', 'logFC', and 'gene'. |
---|---|
p.cut | Numeric. The cutoff for adjusted p-Value to determine significance. Default is 0.05. |
logFC.cut | Numeric. The cutoff for log fold change to determine significance. Default is 1. |
show.top | Logical. If TRUE, labels the top 5 up- and downregulated genes. Default is FALSE. |
show.labels | Character vector. Specific gene labels to show. Default is NULL. |
colors | A vector of color panel, default c("blue", "grey20", "red"). |
Value
A ggplot2 object representing the volcano plot.
Examples
df <- get_OSF_data(table = "GSE74706", action = "geo_data")
results <- DEGs_analysis(df)
plot_volcano(results)
Description
This function calculates the correlation between a given gene and all other genes in the provided expression matrix. It also provides the corresponding p-Values.
Usage
coexpression_analysis(expression_matrix, gene, method = "pearson")
Arguments
expression_matrix | A numeric matrix where rows represent genes and columns represent samples. |
---|---|
gene | A character string representing the gene for which the correlations will be calculated. |
method | A character string specifying the correlation method to be used. Default is "pearson". |
Value
A data frame containing gene names, correlation coefficients, and p-Values.
Examples
expression_matrix <- get_OSF_data(table = "GSE74706", action = "geo_data")
results <- coexpression_analysis(expression_matrix, "RPN1")
print(results)
Description
This function performs Gene Set Enrichment Analysis (GSEA) based on either correlation results or limma differential analysis results.
Usage
GSEA_analysis(data, gmt_file, pValue_cutoff = 0.05, data_type = "correlation")
Arguments
data | A data frame containing gene names and corresponding Values. For correlation results, the columns should be named 'gene' and 'r'. For limma results, the columns should be named 'gene' and 'logFC'. |
---|---|
gmt_file | Path to the GMT file containing gene sets, or directly pass GO/KEGG/Reactome datasets. |
pValue_cutoff | Numeric, the p-Value threshold for significance. Default is 0.05. |
data_type | Character, type of the input data. Either "correlation" for correlation analysis results or "limma" for limma differential analysis results. |
Value
A GSEA analysis result object.
Examples
df <- get_OSF_data(table = "GSE74706", action = "geo_data")
results <- DEGs_analysis(df,tumor_subtype =c("NSCLC"))
gsea_result <- GSEA_analysis(results, gmt_file = BP_GMT_7.5.1, data_type = "limma")
results <- coexpression_analysis(df,"RPN1")
gsea_result <- GSEA_analysis(results, gmt_file = BP_GMT_7.5.1)
Description
Extract significantly upregulated and downregulated genes from multiple DEG analysis results.
Usage
get_DEGs_list(DEGs_lists, logFC_cut = 1, p_cut = 0.05)
Arguments
DEGs_lists | A list of dataframes containing DEG analysis results. |
---|---|
logFC_cut | A numeric Value specifying the log fold change cutoff for significant DEGs. Default is 1. |
p_cut | A numeric Value specifying the p-Value cutoff for significant DEGs. Default is 0.05. |
Value
A list containing two lists: one for upregulated genes and one for downregulated genes across the provided datasets.
Examples
df1 <- get_OSF_data(table = "GSE31210", action = "geo_data")
results1 <- DEGs_analysis(df1)
df2 <- get_OSF_data(table = "GSE19188", action = "geo_data")
results2 <- DEGs_analysis(df2)
DEGs_lists <- list("GSE31210" = results1, "GSE19188" = results2)
results <- get_DEGs_list(DEGs_lists)
Description
This function plots a Venn diagram for lists of differentially expressed genes (DEGs) across multiple datasets.
Usage
plot_venn(results, fill_colors = NULL, palette = "Set1", lty = 2, ...)
Arguments
results | List of character vectors. Each vector contains DEGs for a specific dataset. |
---|---|
fill_colors | Character vector. Colors to fill the Venn diagram circles. Default is NULL, which uses a palette. |
palette | Character. Name of the RColorBrewer palette to use if fill_colors is not specified. Default is "Set1". |
lty | Numeric. Line type for the circles in the Venn diagram. Default is 2 (dashed line). |
... | Additional Arguments passed to venn.diagram function. |
Value
A list of intersected DEGs.
Examples
df1 <- get_OSF_data(table = "GSE31210", action = "geo_data")
results1 <- DEGs_analysis(df1)
df2 <- get_OSF_data(table = "GSE19188", action = "geo_data")
results2 <- DEGs_analysis(df2)
DEGs_lists <- list("GSE31210" = results1, "GSE19188" = results2)
results <- get_DEGs_list(DEGs_lists)
plot_venn(results$DEG_up, palette = "Set1")
plot_venn(results$DEG_up, fill_colors = c("red", "green", "blue"), alpha = 0.5, cex = 1.5)
Description
This function performs RRA analysis on differentially expressed genes (DEGs) lists obtained from various studies. It ranks genes based on their differential expression and aggregates the ranks to identify consistently regulated genes across studies.
Usage
RRA_analysis(
DEGs_lists,
top.num = 0,
rra.p = 0.05,
logFC_cut = 1,
p_cut = 0.05
)
Arguments
DEGs_lists | A list of DEGs data frames. Each data frame should contain at least a 'gene' column and a 'logFC' column. |
---|---|
top.num | Numeric, the number of top genes to select based on their ranks. Default is 0, which selects all genes passing the thresholds. |
rra.p | Numeric, the p-Value threshold for RRA. Default is 0.05. |
logFC_cut | Numeric, the log fold change threshold for filtering genes. Default is 1. |
p_cut | Numeric, the p-Value threshold for filtering genes. Default is 0.05. |
Value
A list containing the number of up- and down-regulated genes and a data matrix of aggregated log fold changes.
Examples
df1 <- get_OSF_data(table = "GSE31210", action = "geo_data")
results1 <- DEGs_analysis(df1)
df2 <- get_OSF_data(table = "GSE19188", action = "geo_data")
results2 <- DEGs_analysis(df2)
DEGs_lists <- list("GSE31210" = results1, "GSE19188" = results2)
RRA_results <- RRA_analysis(DEGs_lists)
ComplexHeatmap::pheatmap(RRA_results$RRA_results)
Description
This function performs batch correction on multiple datasets using the ComBat function from the sva package.
Usage
combat_datasets(tables, tumor_subtype = NULL)
Arguments
tables | A character vector of table names to be processed. |
---|---|
tumor_subtype | A character string specifying the tumor subtype to filter the datasets. If NULL, all subtypes are included. |
Value
A list containing the combined and batch-corrected data matrix and the sample information.
Examples
tables <- c("GSE31210", "GSE74706")
result <- combat_datasets(tables, tumor_subtype = "LC")
combined_data <- result$combined_data
sample_info <- result$sample_info
Description
Get sample_info data and merge it with expression data.
Usage
merge_clinic_data(table = "GSE19188", data_input)
Arguments
table | Character. The name of the dataset table to retrieve sample information from. Default is "GSE19188". |
---|---|
data_input | Data frame. Expression data obtained from get_expr_data() function. |
Value
Data frame. Merged data containing both expression data and sample information.
Examples
data_input <- get_expr_data("GSE19188", "TP53")
results <- merge_clinic_data("GSE19188",data_input)
Description
This function searches for specified names within a nested list structure and extracts the names of found subsets.
Usage
extract_subset(lst, names_to_find)
Arguments
lst | A list which may contain nested lists. |
---|---|
names_to_find | A character vector of names to search for within the list. |
Value
A character vector of unique names from the found subsets.
Examples
nested_list <- list(
a = list(
b = 1,
c = list(d = 2)
),
e = 3
)
names_to_search <- c("b", "d", "e")
result <- extract_subset(nested_list, names_to_search)
print(result)
Description
Summary of the general informations of the GEO datasets in this tool.
Usage
data("dataset_info")
Format
A data frame with 288 observations on the following 6 variables.
4.2. abbr_full
Description
The full name of tumor abbreviation
Usage
data("abbr_full")
Format
A data frame with 132 observations on the following 3 variables.
Description
Subtype list of al cancer types
Usage
data("subtype")
Format
The format is: List of 21
4.4. TIL_map
Description
Mapping of immune cell types and algorithms
Usage
data("TIL_map")
Format
A data frame with 137 observations on the following 2 variables.
Description
Subtype information of all samples
Usage
data("sample_subtype")
Format
A data frame with 28032 observations on the following 5 variables.
Description
Immune cell infiltration score of all samples calculated based on IOBR package.
Usage
data("GCAS_TIL")
Format
A data frame with 19538 observations on the following 138 variables.
Description
Anti-tumor drug sensitivity of all samples calculated based on oncoPredict package and GDSC database.
Usage
data("GCAS_drug")
Format
A data frame with 19816 observations on the following 199 variables.
Description
Anti-tumor drugs informations obtained from GDSC2.0 datasets.
Usage
data("drug_info")
Format
A data frame with 198 observations on the following 6 variables.