-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
305 lines (251 loc) · 11.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import datetime
import os
import re
import time
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import cm
import torch
import torch.utils.data
from torch import nn
from einops import rearrange
from bert.modeling_bert import BertModel
import torchvision
from lib import segmentation
import transforms as T
import utils
import numpy as np
from PIL import Image
import torch.nn.functional as F
import torch.distributed as dist
import util.misc as _utils
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from data.a2d_eval import calculate_precision_at_k_and_iou_metrics
import pycocotools.mask as mask_util
def get_dataset(image_set, transform, args):
if args.dataset == 'refcoco' or args.dataset == 'refcoco+' or args.dataset == 'refcocog':
from data.dataset_refer_bert import ReferDataset
ds = ReferDataset(args,
split=image_set,
image_transforms=transform,
target_transforms=None,
eval_mode=True
)
elif args.dataset == 'a2d':
from data.a2d import build_a2d_dataset
ds = build_a2d_dataset(args, image_set)
num_classes = 2
return ds, num_classes
def evaluate(model, data_loader, bert_model, device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
header = 'Test:'
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
image, target, sentences, attentions = data
image, target, sentences, attentions = image.to(device), target.to(device), \
sentences.to(device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
target = target.cpu().data.numpy()
for j in range(sentences.size(-1)):
if bert_model is not None:
last_hidden_states = bert_model(sentences[:, :, j], attention_mask=attentions[:, :, j])[0]
embedding = last_hidden_states.permute(0, 2, 1)
output = model(image, embedding, l_mask=attentions[:, :, j].unsqueeze(-1))
else:
output = model(image, sentences[:, :, j], l_mask=attentions[:, :, j])
output = output.cpu()
output_mask = output.argmax(1).data.numpy()
I, U = computeIoU(output_mask, target)
if U == 0:
this_iou = 0.0
else:
this_iou = I * 1.0 / U
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
del image, target, sentences, attentions, output, output_mask
if bert_model is not None:
del last_hidden_states, embedding
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU * 100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
def batch_iou(pred_seg, gd_seg):
# pred_seg shape: (b, 1, h, w) or (b, h, w)
# gd_seg shape: (b, 1, h, w) or (b, h, w)
I = np.sum(np.logical_and(pred_seg, gd_seg), axis=(-2, -1), keepdims=False) # (b, 1) or (b)
U = np.sum(np.logical_or(pred_seg, gd_seg), axis=(-2, -1), keepdims=False) # (b, 1) or (b)
return I, U
def evaluate_a2d(model, data_loader, bert_model, device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
total_its = 0
acc_ious = 0
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
with torch.no_grad():
for data in metric_logger.log_every(data_loader, 100, header):
total_its += 1
image, target, sentences, attentions = data
masks = target['masks'] # [B, T, H, W]
valid_indices = target['valid_indices']
image, masks, sentences, attentions = image.to(device), masks.to(device), sentences.to(
device), attentions.to(device)
sentences = sentences.squeeze(1)
attentions = attentions.squeeze(1)
masks = rearrange(masks, 'b t h w -> (b t) h w') # [B, H, W] if T = 1, else (B*T, H, W)
if bert_model is not None:
last_hidden_states = bert_model(sentences, attention_mask=attentions)[0]
embedding = last_hidden_states.permute(0, 2, 1) # (B, 768, N_l) to make Conv1d happy
attentions = attentions.unsqueeze(dim=-1) # (B, N_l, 1)
output = model(image, embedding, l_mask=attentions)
else:
if args.save_feats:
output, bag_feats = model.forward_feats(image, sentences, l_mask=attentions)
# colormap = cm.RdBu_r
# 4 feature maps
to_store = []
t = image.size(1)
for feats in bag_feats:
valid_indices = torch.tensor([i * t + ind for i, ind in enumerate(valid_indices)]).to(device)
feats = torch.index_select(feats, 0, valid_indices)
to_store.append(feats.squeeze(0).cpu().numpy())
image_id = target['image_id'][0]
matchObj = re.match(r'v_(.*)_f_(.*)_i_(.*)', image_id, re.M | re.I)
if matchObj:
video_id = matchObj.group(1)
frame_id = matchObj.group(2)
instance_id = matchObj.group(3)
sub_folder_name = os.path.join('./a2d_visualized_feats', video_id, frame_id)
if not os.path.isdir(sub_folder_name):
os.makedirs(sub_folder_name)
for a in range(4, 0, -1):
# residual_Cs[a].save(os.path.join(path_to_save, 'residual_C' + str(a+1) + '.jpg'))
# default: 'viridis'
plt.imsave(os.path.join(sub_folder_name, instance_id + '_L' + str(a) + '.png'), to_store[4 - a],
cmap='RdBu_r')
else:
output = model(image, sentences, l_mask=attentions)
t = image.size(1)
valid_indices = torch.tensor([i * t + ind for i, ind in enumerate(valid_indices)]).to(device)
output_valid = torch.index_select(output, 0, valid_indices)
if args.a2d_masks:
output_valid = output_valid.argmax(1) # (B*T, H, W)
output_valid = output_valid.squeeze() # (H, W) (480, 480)
output_valid = output_valid.cpu().numpy().astype(np.uint8) # (orig_h, orig_w), np.uint8
output_valid = Image.fromarray(output_valid)
image_id = target['image_id'][0]
matchObj = re.match(r'v_(.*)_f_(.*)_i_(.*)', image_id, re.M | re.I)
if matchObj:
video_id = matchObj.group(1)
frame_id = matchObj.group(2)
instance_id = matchObj.group(3)
path = os.path.join('./a2d_predicted_masks', video_id, frame_id)
if not os.path.isdir(path):
os.makedirs(path)
output_valid.save(path + '/' + instance_id + '.png')
continue
iou, I, U = IoU(output_valid, masks)
acc_ious += iou
mean_IoU.append(iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (iou >= eval_seg_iou)
seg_total += 1
iou = acc_ious / total_its
if args.a2d_masks:
return
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU * 100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
return 100 * iou, 100 * cum_I / cum_U
def get_transform(args):
transforms = [T.Resize(args.img_size, args.img_size),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return T.Compose(transforms)
def computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
# IoU calculation for validation
def IoU(pred, gt):
pred = pred.argmax(1) # (B*T, H, W)
intersection = torch.sum(torch.mul(pred, gt))
# scalar tensor; if B*T != 1, then this does not strictly lead to mean IoU
union = torch.sum(torch.add(pred, gt)) - intersection # scalar tensor
if intersection == 0 or union == 0:
iou = 0
else:
iou = float(intersection) / float(union)
return iou, intersection, union
def main(args):
integrated = (args.model == 'lavt_one' or args.model == 'lavt_video' or args.model == 'lts' or args.model == 'vlt')
device = torch.device(args.device)
dataset_test, _ = get_dataset(args.split, get_transform(args=args), args)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers)
print(args.model)
single_model = segmentation.__dict__[args.model](pretrained='', args=args)
checkpoint = torch.load(args.resume, map_location='cpu')
if args.ckpt == True:
single_model.load_state_dict(checkpoint['model'], strict=False)
else:
single_model.load_state_dict(checkpoint['model'])
model = single_model.to(device)
if not integrated:
model_class = BertModel
single_bert_model = model_class.from_pretrained(args.ck_bert)
# work-around for a transformers bug; need to update to a newer version of transformers to remove these two lines
if args.ddp_trained_weights:
single_bert_model.pooler = None
single_bert_model.load_state_dict(checkpoint['bert_model'])
bert_model = single_bert_model.to(device)
else:
bert_model = None
if args.dataset == "a2d":
evaluate_a2d(model, data_loader_test, bert_model, device=device)
else:
evaluate(model, data_loader_test, bert_model, device=device)
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
print('Image size: {}'.format(str(args.img_size)))
main(args)