Skip to content
/ LAVT-RS Public

[CVPR2022, TPAMI2024] LAVT: Language-Aware Vision Transformer for Referring Segmentation

License

Notifications You must be signed in to change notification settings

Yxxxb/LAVT-RS

Repository files navigation

LAVT: Language-Aware Vision Transformer for Referring Segmentation [CVPR2022, TPAMI2024]

  • LAVT-RS is officially accepted by TPAMI 2024! 🎉🎉🎉
  • LAVT-RIS (repo: LAVT-RIS) is officially accepted by CVPR 2022! 🎉🎉🎉

Welcome to the repository for the method presented in "Language-Aware Vision Transformer for Referring Segmentation." Code in this repository is written using PyTorch and is organized in the following way (assuming the working directory is the root directory of this repository):

  • ./lib contains files implementing the main network.
  • ./bert contains files migrated from Hugging Face Transformers v3.0.2, which implement the BERT language model. We have used Transformers v3.0.2 during development but it has a bug that would appear when using DistributedDataParallel. Therefore we decided to maintain a copy of the relevant source files in this repository. This way, the bug is fixed and code in this repository is self-contained.
  • ./refer contains data pre-processing code and is also where data should be placed, including the images and all annotations. It is cloned from refer.
  • ./data/dataset_refer_bert.py is where the dataset class is defined.
  • ./utils.py defines functions that track statistics during training and also setup functions for using DistributedDataParallel.
  • Inside ./lib, _utils.py defines the highest-level model, which incorporates the backbone network defined in backbone.py and the simple mask decoder defined in mask_predictor.py, and segmentation.py provides a model interface and functions used to initialize the model.
  • ./lib/video_swin_transformer.py contains the new Video Swin visual backbone.
  • ./train.py is invoked to train the model.
  • ./test_ytvos.py is invoked to run inference on the validation set of YouTube-VOS. The output prediction masks folder needs to be renamed and compressed to .zip and uploaded to the 2022 competition server for evaluation.

Setting Up

Preliminaries

The code has been verified to work with PyTorch v1.7.1/v1.8.1 and Python 3.7.

  1. Clone this repository.
  2. Change directory to root of this repository.

Package Dependencies

  1. Create a new Conda environment with Python 3.7 then activate it:
conda create -n lavt python==3.7
conda activate lavt
  1. Install PyTorch v1.7.1 with a CUDA version that works on your cluster/machine (CUDA 10.2 is used in this example):
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch
  1. Install the packages in requirements.txt via pip:
pip install -r requirements.txt

Datasets

Image

  1. Follow instructions in the ./refer directory to set up subdirectories and download annotations. This directory is a git clone (minus two data files that we do not need) from the refer public API.

  2. Download images from COCO. Please use the first downloading link 2014 Train images [83K/13GB], and extract the downloaded train_2014.zip file to ./refer/data/images/mscoco/images.

Video

Data directories have the following structure:

lavt_video/
└── data/
    ├── A2D/
    │   └── Release/
    │       ├── a2d_annotation.txt
    │       ├── a2d_missed_videos.txt
    │       ├── videoset.csv
    │       ├── a2d_annotation_with_instances/  # ls -l | wc -l gives 3756
    │       │   └── */  (video folders)
    │       │       └── *.h5  (mask annotation files) 
    │       ├── Annotations/
    │       │   ├── col  # ls -l | wc -l gives 3783
    │       │   │   └── */ (video folders)
    │       │   │       └── *.png  (masks in png format) 
    │       │   └── mat  # ls -l | wc -l gives 3783
    │       │       └── */ (video folders)
    │       │           └── *.mat  (masks stored as matrices)
    │       ├── pngs320H/  # ls -l | wc -l gives 3783
    │       │   └── */ (video folders)
    │       │       └── *.png  (frame images; index starts at 00001)
    │       └── clips320H/  # ls -l | wc -l gives 3783
    │           └── *.mp4  (raw MP4 videos)
    │
    │
    └── ReferringYouTubeVOS2021/
        ├── train/
        │    ├── Annotations/  # ls -l | wc -l gives 3472
        │    │   └── */  (video folders)
        │    │       └── *.png  (mask images)
        │    ├── JPEGImages/  # ls -l | wc -l gives 3472
        │    │   └── */  (video folders)
        │    │       └── *.jpg  (frame images)
        │    └── meta.json  # (this is 2019 training set meta file; has no expressions)
        │
        ├── valid/
        │   └── JPEGImages/  # ls -l | wc -l gives 203
        │       └── */  (video folders)
        │           └── *.jpg  (frame images)
        ├── test/ 
        │   └── JPEGImages/  # ls -l | wc -l gives 306
        │       └── */  (video folders)
        │           └── *.jpg  (frame images)
        └── meta_expressions/
            ├── train/
            │   └── meta_expressions.json  (video meta info with expressions)
            ├── valid/
            │   └── meta_expressions.json  (video meta info with expressions)
            └── test/
                └── meta_expressions.json  (video meta info with expressions)

Weights for Training

  1. Create the ./pretrained_weights directory where we will be storing the weights.
mkdir ./pretrained_weights
    1. The original Swin Transformer. Download pre-trained classification weights of the Swin Transformer, swin_base_patch4_window12_384_22k.pth, into ./pretrained_weights. These weights are needed in training to initialize the model.
    2. The Video Swin Transformer. Download swin_tiny_patch244_window877_kinetics400_1k.pth, swin_small_patch244_window877_kinetics400_1k.pth, swin_base_patch244_window877_kinetics400_1k.pth, swin_base_patch244_window877_kinetics400_22k.pth, swin_base_patch244_window877_kinetics600_22k.pth, and swin_base_patch244_window1677_sthv2.pth into ./pretrained_weights.
  1. Create the ./checkpoints directory where the program will save the weights during training. (this is only true for the image-version LAVT; video LAVT saves 10 currently best checkpoints in ./models/[args.model_id]).

mkdir ./checkpoints

Training

We use DistributedDataParallel from PyTorch. The released lavt weights were trained using 4 x 32G V100 cards (max mem on each card was about 26G). The released lavt_one weights were trained using 8 x 32G V100 cards (max mem on each card was about 13G). The released lavt_video weights were trained using 8 x 32G V100 cards (max mem on each card was about 13G). Using more cards was to accelerate training.

To run on 4 GPUs (with IDs 0, 1, 2, and 3) on a single node for RIS:

mkdir ./models

mkdir ./models/refcoco
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcoco --model_id refcoco --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco/output

mkdir ./models/refcoco+
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcoco+ --model_id refcoco+ --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/refcoco+/output

mkdir ./models/gref_umd
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcocog --splitBy umd --model_id gref_umd --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_umd/output

mkdir ./models/gref_google
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 train.py --model lavt --dataset refcocog --splitBy google --model_id gref_google --batch-size 8 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/gref_google/output

To run on 8 GPUs (with IDs 0, 1, 2, 3, 4, 5, 6, 7) on a single node for RVOS:

mkdir ./models

mkdir ./models/a2d
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 train.py --model lavt_video --dataset a2d --model_id a2d --batch-size 4 --lr 0.00006 --wd 1e-2 --swin_type tiny --sep_t_pwam --conv3d_kernel_size_t 3-3-3 --conv3d_kernel_size_s 1-1-1 --w_t3x3_s1x1 --mm_t3x3_s1x1 --pretrained_swin_weights ./pretrained_weights/swin_tiny_patch244_window877_kinetics400_1k.pth --epochs 40 --img_size 480 2>&1 | tee ./models/a2d/output

mkdir ./models/ytvos
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 train.py --model lavt_video --dataset a2d --model_id a2d --batch-size 1 --lr 0.00005 --wd 1e-2 --swin_type tiny --sep_t_pwam --conv3d_kernel_size_t 3-3-3 --conv3d_kernel_size_s 1-1-1 --w_t3x3_s1x1 --mm_t3x3_s1x1 --pretrained_swin_weights ./pretrained_weights/swin_tiny_patch244_window877_kinetics400_1k.pth --epochs 30 --img_size 480 2>&1 | tee ./models/a2d/output
  • --model is a pre-defined model name. Options include lavt , lavt_videoand lavt_one. See Updates.
  • --dataset is the dataset name. One can choose from refcoco,refcoco+, and refcocog.
  • --splitBy needs to be specified if and only if the dataset is G-Ref (which is also called RefCOCOg). umd identifies the UMD partition and google identifies the Google partition.
  • --model_id is the model name one should define oneself (e.g., customize it to contain training/model configurations, dataset information, experiment IDs, etc.). It is used in two ways: Training log will be saved as ./models/[args.model_id]/output and the best checkpoint will be saved as ./checkpoints/model_best_[args.model_id].pth.
  • --swin_type specifies the version of the Swin Transformer. One can choose from tiny, small, base, and large. The default is base.
  • --pretrained_swin_weights specifies the path to pre-trained Swin Transformer weights used for model initialization.
  • Note that currently we need to manually create the ./models/[args.model_id] directory via mkdir before running train.py. This is because we use tee to redirect stdout and stderr to ./models/[args.model_id]/output for logging. This is a nuisance and should be resolved in the future, i.e., using a proper logger or a bash script for initiating training.

Testing

For RefCOCO/RefCOCO+, run one of

python test.py --model lavt --swin_type base --dataset refcoco --split val --resume ./checkpoints/refcoco.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
python test.py --model lavt --swin_type base --dataset refcoco+ --split val --resume ./checkpoints/refcoco+.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
  • --split is the subset to evaluate, and one can choose from val, testA, and testB.
  • --resume is the path to the weights of a trained model.

For G-Ref (UMD)/G-Ref (Google), run one of

python test.py --model lavt --swin_type base --dataset refcocog --splitBy umd --split val --resume ./checkpoints/gref_umd.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
python test.py --model lavt --swin_type base --dataset refcocog --splitBy google --split val --resume ./checkpoints/gref_google.pth --workers 4 --ddp_trained_weights --window12 --img_size 480
  • --splitBy specifies the partition to evaluate. One can choose from umd or google.
  • --split is the subset (according to the specified partition) to evaluate, and one can choose from val and test for the UMD partition, and only val for the Google partition..
  • --resume is the path to the weights of a trained model.

For A2D, run

python test.py --model lavt_video --swin_type tiny --dataset a2d --conv3d_kernel_size_t 3-3-3 --conv3d_kernel_size_s 1-1-1 --w_t3x3_s1x1 --mm_t3x3_s1x1 --num_frames 8 --split val --resume ./checkpoints/a2d.pth --sample_3 --img_size 480 --clip_length 16 --split val
  • --split is the subset to evaluate, and one can only choose val.
  • --resume is the path to the weights of a trained model.
  • --clip_length is the length of frames of each clip while testing.

For YTVOS, run

python test_ytvos.py 1 --model lavt_video --sep_t_pwam --conv3d_kernel_size_t 3-3-3 --conv3d_kernel_size_s 1-1-1 --w_t3x3_s1x1 --mm_t3x3_s1x1 --swin_type tiny --dataset ytvos --split valid --resume ./models/ytvos.pth --img_size 480
  • --split is the subset to evaluate, and one can only choose val.
  • --resume is the path to the weights of a trained model.

Results and weights

Image

The complete test results of the released LAVT models are summarized as follows: we report the results of LAVT trained with a multi-class Dice loss and based on the new implementation (lavt_one).

Dataset [email protected] [email protected] [email protected] [email protected] [email protected] Overall IoU Mean IoU
RefCOCO val 85.87 82.13 76.64 65.45 35.30 73.50 75.41
RefCOCO test A 88.47 85.63 80.57 68.84 35.71 75.97 77.31
RefCOCO test B 80.20 76.49 70.34 60.12 34.94 69.33 71.86
RefCOCO+ val 76.19 72.27 66.82 56.87 30.15 63.79 67.65
RefCOCO+ test A 82.50 79.44 74.00 63.27 31.99 69.79 72.53
RefCOCO+ test B 68.03 63.35 57.29 47.92 26.98 56.49 61.22
G-Ref val (UMD) 75.82 71.06 63.99 52.98 27.31 64.02 67.41
G-Ref test (UMD) 76.12 71.13 64.58 53.62 28.03 64.49 67.45
G-Ref val (Goog.) 72.57 68.65 63.09 53.33 28.14 61.31 64.84

To train weights of image LAVT for testing, you could follow:

  1. Create the ./checkpoints directory where we will be storing the weights.
mkdir ./checkpoints
  1. Download LAVT model weights (which are stored on Google Drive) using links below and put them in ./checkpoints.
RefCOCO RefCOCO+ G-Ref (UMD) G-Ref (Google)
  1. Model weights and training logs of the new lavt_one implementation are below.
RefCOCO RefCOCO+ G-Ref (UMD) G-Ref (Google)
log | weights log | weights log | weights log | weights
  • The Prec@K, overall IoU and mean IoU numbers in the training logs will differ from the final results obtained by running test.py, because only one out of multiple annotated expressions is randomly selected and evaluated for each object during training. But these numbers give a good idea about the test performance. The two should be fairly close.

Video

Results on the Refer-YouTube-VOS dataset under the “train-from-scratch” training setting with different backbone networks employed.

Backbone J & F J F
Video Swin-T 57.04 55.39 58.69
Video Swin-S 58.79 57.10 60.49
Video Swin-B 60.45 58.49 62.42

Results on the Refer-YouTube-VOS dataset under the “pretrain-then-finetune” training setting with different backbone networks employed.

Backbone J & F J F
Video Swin-T 60.91 59.37 62.45
Video Swin-S 62.96 60.35 65.56
Video Swin-B 64.90 62.22 67.58

Results on the A2D-Sentences dataset under the “train-from-scratch” training setting with different backbone networks employed.

Backbone oIoU mIoU
Video Swin-T 74.4 65.9
Video Swin-S 75.5 67.7
Video Swin-B 77.0 68.7

Results on the A2D-Sentences dataset under the “pretrain-then-finetune” training setting with different backbone networks employed.

Backbone oIoU mIoU
Video Swin-T 77.9 70.0
Video Swin-S 79.1 70.4
Video Swin-B 80.7 71.9

You could download video LAVT model weights (which are stored on Tsinghua cloud disk) using links below and put them in ./checkpoints.

Refer-YouTube-VOS A2D-Sentences
Refcoco_pretrain Refcoco_pretrain
YTVOS_finetune A2D_finetune
YTVOS_scratch A2D_scratch
3D_PWAM_ablation -
CM-FPN_ablation -

Contributing

We appreciate all contributions. It helps the project if you could

  • report issues you are facing,
  • give a 👍 on issues reported by others that are relevant to you,
  • answer issues reported by others for which you have found solutions,
  • and implement helpful new features or improve the code otherwise with pull requests.

Acknowledgements

Code in this repository is built upon several public repositories. Specifically,

Some of these repositories in turn adapt code from OpenMMLab and TorchVision. We'd like to thank the authors/organizations of these repositories for open sourcing their projects.

About

[CVPR2022, TPAMI2024] LAVT: Language-Aware Vision Transformer for Referring Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages