Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Python interface for more parsing factors #25

Open
wants to merge 24 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 19 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions ad3/Factor.h
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,7 @@ class Factor {

void SetAdditionalLogPotentials(
const vector<double> &additional_log_potentials) {
CheckAdditionalLogPotentials(additional_log_potentials);
additional_log_potentials_ = additional_log_potentials;
}

Expand Down Expand Up @@ -218,6 +219,13 @@ class Factor {
&additional_posteriors_last_);
}

// check whether the given potentials are valid and raise an exception
// if they are not
virtual const void CheckAdditionalLogPotentials(
const vector<double> &additional_log_potentials){
return;
}

private:
int id_; // Factor id.

Expand Down
226 changes: 226 additions & 0 deletions ad3/logval.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
#ifndef LOGVAL_H_
#define LOGVAL_H_

#define LOGVAL_CHECK_NEG 0

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <limits>
#include <cassert>

#define LOGVAL_LOG0 -std::numeric_limits<T>::infinity()

//TODO: template for supporting negation or not - most uses are for nonnegative "probs" only; probably some 10-20% speedup available
template <class T>
class LogVal {
public:
void print(std::ostream &o) const {
if (s_) o << "(-)";
o << v_;
}
//PRINT_SELF(LogVal<T>)

typedef LogVal<T> Self;

LogVal() : s_(), v_(LOGVAL_LOG0) {}
LogVal(double x) : s_(std::signbit(x)), v_(s_ ? std::log(-x) : std::log(x)) {}
const Self& operator=(double x) { s_ = std::signbit(x); v_ = s_ ? std::log(-x) : std::log(x); return *this; }
LogVal(double lnx, bool sign) : s_(sign), v_(lnx) {}
static Self exp(T lnx) { return Self(lnx, false); }

// maybe the below are faster than == 1 and == 0. i don't know.
bool is_1() const { return v_ == 0 && s_ == 0; }
bool is_0() const { return v_ == LOGVAL_LOG0; }

static Self One() { return Self(1); }
static Self Zero() { return Self(); }
static Self e() { return Self(1, false); }
void logeq(const T& v) { s_ = false; v_ = v; }

// just like std::signbit, negative means true. weird, i know
bool signbit() const {
return s_;
}
friend inline bool signbit(Self const& x) { return x.signbit(); }

T logabs() const {
return v_;
}

Self& besteq(const Self& a) {
assert(!a.s_ && !s_);
if (a.v_ < v_)
v_ = a.v_;
return *this;
}

Self& operator+=(const Self& a) {
if (a.is_0()) return *this;
if (a.s_ == s_) {
if (a.v_ < v_) {
v_ = v_ + log1p(std::exp(a.v_ - v_));
} else {
v_ = a.v_ + log1p(std::exp(v_ - a.v_));
}
} else {
if (a.v_ < v_) {
v_ = v_ + log1p(-std::exp(a.v_ - v_));
} else {
v_ = a.v_ + log1p(-std::exp(v_ - a.v_));
s_ = !s_;
}
}
return *this;
}

Self& operator*=(const Self& a) {
s_ = (s_ != a.s_);
v_ += a.v_;
return *this;
}

Self& operator/=(const Self& a) {
s_ = (s_ != a.s_);
v_ -= a.v_;
return *this;
}

Self& operator-=(const Self& a) {
Self b = a;
b.negate();
return *this += b;
}

// Self(fabs(log(x)),x.s_)
friend Self abslog(Self x) {
if (x.v_ < 0) x.v_ = -x.v_;
return x;
}

Self& poweq(const T& power) {
#if LOGVAL_CHECK_NEG
if (s_) {
std::cerr << "poweq(T) not implemented when s_ is true\n";
std::abort();
} else
#endif
v_ *= power;
return *this;
}

//remember, s_ means negative.
inline bool lt(Self const& o) const {
return s_ == o.s_ ? v_ < o.v_ : s_ > o.s_;
}
inline bool gt(Self const& o) const {
return s_ == o.s_ ? o.v_ < v_ : s_ < o.s_;
}

Self operator-() const {
return Self(v_, !s_);
}
void negate() { s_ = !s_; }

Self inverse() const { return Self(-v_, s_); }

Self pow(const T& power) const {
Self res = *this;
res.poweq(power);
return res;
}

Self root(const T& root) const {
return pow(1 / root);
}

T as_float() const {
if (s_) return -std::exp(v_); else return std::exp(v_);
}

bool s_;
T v_;
};

// copy elision - as opposed to explicit copy of LogVal<T> const& o1, we should be able to construct Logval r=a+(b+c) as a single result in place in r. todo: return std::move(o1) - C++0x
template<class T>
LogVal<T> operator+(LogVal<T> o1, const LogVal<T>& o2) {
o1 += o2;
return o1;
}

template<class T>
LogVal<T> operator*(LogVal<T> o1, const LogVal<T>& o2) {
o1 *= o2;
return o1;
}

template<class T>
LogVal<T> operator/(LogVal<T> o1, const LogVal<T>& o2) {
o1 /= o2;
return o1;
}

template<class T>
LogVal<T> operator-(LogVal<T> o1, const LogVal<T>& o2) {
o1 -= o2;
return o1;
}

template<class T>
T log(const LogVal<T>& o) {
#ifdef LOGVAL_CHECK_NEG
if (o.s_) return log(-1.0);
#endif
return o.v_;
}

template<class T>
LogVal<T> abs(const LogVal<T>& o) {
if (o.s_) {
LogVal<T> res = o;
res.s_ = false;
return res;
} else { return o; }
}

template <class T>
LogVal<T> pow(const LogVal<T>& b, const T& e) {
return b.pow(e);
}

template <class T>
bool operator==(const LogVal<T>& lhs, const LogVal<T>& rhs) {
return (lhs.v_ == rhs.v_) && (lhs.s_ == rhs.s_);
}

template <class T>
bool operator!=(const LogVal<T>& lhs, const LogVal<T>& rhs) {
return !(lhs == rhs);
}

template <class T>
bool operator<(const LogVal<T>& lhs, const LogVal<T>& rhs) {
if (lhs.s_ == rhs.s_) {
return (lhs.v_ < rhs.v_);
} else {
return lhs.s_ > rhs.s_;
}
}

template <class T>
bool operator<=(const LogVal<T>& lhs, const LogVal<T>& rhs) {
return (lhs < rhs) || (lhs == rhs);
}

template <class T>
bool operator>(const LogVal<T>& lhs, const LogVal<T>& rhs) {
return !(lhs <= rhs);
}

template <class T>
bool operator>=(const LogVal<T>& lhs, const LogVal<T>& rhs) {
return !(lhs < rhs);
}

#endif
8 changes: 7 additions & 1 deletion ad3_multi.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -570,8 +570,11 @@ int LoadGraph(ifstream &file_graph,
vector<vector<int> > index_siblings(length, vector<int>(length+1, -1));
int total = 0;
vector<Sibling*> siblings;
vector<Arc*> arcs;
vector<double> additional_scores;
for (int m = 0; m < length; ++m) {
Arc *arc = new Arc(0, m);
arcs.push_back(arc);
for (int s = m+1; s <= length; ++s) {
// Create a fake sibling.
Sibling *sibling = new Sibling(0, m, s);
Expand All @@ -584,10 +587,13 @@ int LoadGraph(ifstream &file_graph,
}
factor = new FactorHeadAutomaton;
factor_graph->DeclareFactor(factor, binary_variables, true);
static_cast<FactorHeadAutomaton*>(factor)->Initialize(length, siblings);
static_cast<FactorHeadAutomaton*>(factor)->Initialize(arcs, siblings);
for (int r = 0; r < siblings.size(); ++r) {
delete siblings[r];
}
for (int r = 0; r < arcs.size(); ++r) {
delete arcs[r];
}
factor->SetAdditionalLogPotentials(additional_scores);
num_factor_log_potentials += additional_scores.size();
cout << "Read head automaton factor." << endl;
Expand Down
110 changes: 110 additions & 0 deletions examples/cpp/parsing/Decode.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
#include <Eigen/Dense>
#include "FactorTree.h"
#include "Utils.h"
#include "logval.h"

// Define a matrix of doubles using Eigen.
typedef LogVal<double> LogValD;
namespace Eigen {
typedef Eigen::Matrix<LogValD, Dynamic, Dynamic> MatrixXlogd;
}

namespace AD3
{
// decoder for an arc factored parser; it invokes the matrix-tree theorem.
// index is a n x (n - 1) matrix mapping (head, modifier) to either -1 (if
// it doesn't exist) or its index in the scores vector.
void DecodeMatrixTree(const vector<vector<int> > &index, const vector<Arc*> &arcs,
const vector<double> &scores,
vector<double> *predicted_output,
double *log_partition_function, double *entropy) {
int length = index.size();

// Matrix for storing the potentials.
Eigen::MatrixXlogd potentials(length, length);
// Kirchhoff matrix.
Eigen::MatrixXlogd kirchhoff(length - 1, length - 1);

// Compute an offset to improve numerical stability. This is a constant that
// is subtracted from all scores.
int num_arcs = arcs.size();
double constant = 0.0;
for (int r = 0; r < num_arcs; ++r) {
constant += scores[r];
}
constant /= static_cast<double>(num_arcs);

// Set the potentials.
for (int h = 0; h < length; ++h) {
for (int m = 0; m < length; ++m) {
potentials(m, h) = LogValD::Zero();
int r = index[h][m];
if (r >= 0) {
potentials(m, h) = LogValD(scores[r] - constant, false);
}
}
}

// Set the Kirchhoff matrix.
for (int h = 0; h < length - 1; ++h) {
for (int m = 0; m < length - 1; ++m) {
kirchhoff(h, m) = -potentials(m + 1, h + 1);
}
}
for (int m = 1; m < length; ++m) {
LogValD sum = LogValD::Zero();
for (int h = 0; h < length; ++h) {
sum += potentials(m, h);
}
kirchhoff(m - 1, m - 1) = sum;
}

// Inverse of the Kirchoff matrix.
Eigen::FullPivLU<Eigen::MatrixXlogd> lu(kirchhoff);
Eigen::MatrixXlogd inverted_kirchhoff = lu.inverse();
*log_partition_function = lu.determinant().logabs() +
constant * (length - 1);

Eigen::MatrixXlogd marginals(length, length);
for (int h = 0; h < length; ++h) {
marginals(0, h) = LogValD::Zero();
}
for (int m = 1; m < length; ++m) {
marginals(m, 0) = potentials(m, 0) * inverted_kirchhoff(m - 1, m - 1);
for (int h = 1; h < length; ++h) {
marginals(m, h) = potentials(m, h) *
(inverted_kirchhoff(m - 1, m - 1) - inverted_kirchhoff(m - 1, h - 1));
}
}

// Compute the entropy.
predicted_output->resize(num_arcs);
*entropy = *log_partition_function;
for (int r = 0; r < num_arcs; ++r) {
int h = arcs[r]->head();
int m = arcs[r]->modifier();
if (marginals(m, h).signbit()) {
if (!NEARLY_ZERO_TOL(marginals(m, h).as_float(), 1e-6)) {
// LOG(INFO) << "Marginals truncated to zero (" << marginals(m, h).as_float() << ")";
cerr << "Marginals truncated to zero (" << marginals(m, h).as_float() << ")";
}
// CHECK(!std::isnan(marginals(m, h).as_float()));
} else if (marginals(m, h).logabs() > 0) {
if (!NEARLY_ZERO_TOL(marginals(m, h).as_float() - 1.0, 1e-6)) {
// LOG(INFO) << "Marginals truncated to one (" << marginals(m, h).as_float() << ")";
cerr << "Marginals truncated to one (" << marginals(m, h).as_float() << ")";
}
}
(*predicted_output)[r] = marginals(m, h).as_float();
*entropy -= (*predicted_output)[r] * scores[r];
}
if (*entropy < 0.0) {
if (!NEARLY_ZERO_TOL(*entropy, 1e-6)) {
// LOG(INFO) << "Entropy truncated to zero (" << *entropy << ")";
cerr << "Entropy truncated to zero (" << *entropy << ")";
}
*entropy = 0.0;
}
}

} // AD3
Loading