Skip to content

Commit

Permalink
topocorr
Browse files Browse the repository at this point in the history
  • Loading branch information
covid1974 committed Apr 23, 2024
1 parent 9bad1b1 commit 5a0e01a
Show file tree
Hide file tree
Showing 9 changed files with 81 additions and 73 deletions.
22 changes: 11 additions & 11 deletions topo/topo2.html
Original file line number Diff line number Diff line change
Expand Up @@ -206,11 +206,11 @@ <h1><a
Let, if possible, $C$ be not connected. Let $C = D\cup E $ be a disconnection.
<p></p>
Then $\forall \alpha\in \Lambda~~(C_ \alpha\subseteq D\mbox{ or } C_ \alpha\subseteq E).$
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>Otherwise, for some $\alpha\in \Lambda$ we have $C_ \alpha\cap D\neq\phi$ and
$C_ \alpha\cap E\neq\phi.$ Then $(C_ \alpha\cap E)\cup(C_ \alpha\cap E)$ is a disconnection for $C_ \alpha.$</blockquote>
Also, $\exists \alpha\in \Lambda~~C_ \alpha\subseteq D$ and $\exists \beta\in \Lambda~~C_ \beta\subseteq E.$
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>Otherwise, either $D=\phi$ or $E=\phi.$</blockquote>

<p></p>
Expand Down Expand Up @@ -279,7 +279,7 @@ <h1><a
Since $U\cap V=\phi,$ this is well-defined.
<p></p>
This function is continuous.
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Let $A\subseteq{\mathbb R}$ be open.
<ul>
Expand Down Expand Up @@ -353,7 +353,7 @@ <h1><a
Let, if possible, $A\cup C$ be not connected. Let $(U,V)$ be a disconnection. Then either $C\subseteq U$ or
$C\subseteq V,$ since $C$ is connected. Wlog, let $C\subseteq V.$ Then $(U,V\cup B)$ is a disconnection.
for $A\cup B\cup C.$
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
$U$ is clopen in $A\cup C.$ Since $C\cap U=\phi,$ hence $U\subseteq A.$
Since $A,B$ are separated, hence $B$ is separated from $U.$ So $U$ is clopen in $A\cup B\cup C.$
Expand Down Expand Up @@ -433,7 +433,7 @@ <h1><a
Ler $A$ be a connected component of a topological space $(X,\tau).$
<p></p>
Then $A$ is the intersection of all its clopen supersets.
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Let $C$ be a clopen superset of $A.$ Let $p\in C^c.$ Then $C^c$ and
$C$ provide a disconnection for $A\cup\{p\}.$
Expand Down Expand Up @@ -874,7 +874,7 @@ <h1><a
Let $C = \cup_n B_n^c,$ which is a countable union of finite sets, and hence countable. Since $X$ is uncountable,
$C^c\neq\phi.$
<p></p>
We take any $x\in C.$. Then $\{x}^c$ is an open set containing $p.$
We take any $x\in C.$. Then $\{x\}^c$ is an open set containing $p.$
<p></p>
So there must be some $n\in{\mathbb N}$ such that $B_n\subseteq\{x\}^c,$ ie, $c\in B_n^c(\contra\bc x\in C^c).$
<p></p>
Expand Down Expand Up @@ -997,7 +997,7 @@ <h1><a
<p></p>
<b>SOLUTION:</b>
<b><font color="#0000cc">
Let $G=\{(x,f(x))~:~x\in X\}.$ We take any $(a,b)\in (X\timesY)\seminus G.$
Let $G=\{(x,f(x))~:~x\in X\}.$ We take any $(a,b)\in (X\times Y)\setminus G.$
<p></p>
So $b\neq f(a).$ Since $Y$ is $T_2,$ hence can find two disjoint open sets $U$ and $V$ in $Y$
such that $f(a)\in U$ and $b\in V.$
Expand Down Expand Up @@ -1105,7 +1105,7 @@ <h1><a
Let $\epsilon = \alpha-\inf\{d(x,a)~:~a\in A\}&gt;0.$
<p></p>
Then $N\left(x,\frac \epsilon2\right)\subseteq G.$
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Take any $y\in N\left(x,\frac \epsilon2\right)$ and any $a\in A.$
<p></p>
Expand Down Expand Up @@ -1189,7 +1189,7 @@ <h1><a
We assume that $f$ is onto.
<p></p>
Since $f$ is an isometry, it is one-one.
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
$x_1\neq x_2\Rightarrow d(x_1,x_2) &gt; 0 \Rightarrow d'(f(x_1),f(x_2))= d(x_1,x_2)&gt; 0\Rightarrow f(x_1)\neq f(x_2).$
</blockquote>
Expand Down Expand Up @@ -1340,7 +1340,7 @@ <h1><a
<p></p>
Then the subcollection ${\cal D}=\{B_n~:~n\in{\mathbb N}\}$ is again a base.
<p></p>
Clearly, $B_n\in\{\cal B}\subseteq\tau.$
Clearly, $B_n\in{\cal B}\subseteq\tau.$
<p></p>
Let $U\in\tau$ and $x\in U.$ Then $\exists n\in{\mathbb N} ~~x\in C_n\subseteq U.$
</font></b> ///
Expand Down Expand Up @@ -1406,7 +1406,7 @@ <h1><a
It is not Hausdorff, because all non-empty open sets intersect.
<p></p>
Each convergent sequence is eventually constant.
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Let $x_n\rightarrow L.$ Then $G = \{x_n\}^c\cup\{L\}$ is an open neighbourhood of $L.$ So
$\exists K\in{\mathbb N}~~\forall n\geq K~~x_n\in G.$
Expand Down
6 changes: 3 additions & 3 deletions topo/topo2.rb
Original file line number Diff line number Diff line change
Expand Up @@ -540,7 +540,7 @@
Let <M>C = \cup_n B_n^c,</M> which is a countable union of finite sets, and hence countable. Since <M>X</M> is uncountable,
<M>C^c\neq\phi.</M>

We take any <M>x\in C.</M>. Then <M>\{x}^c</M> is an open set containing <M>p.</M>
We take any <M>x\in C.</M>. Then <M>\{x\}^c</M> is an open set containing <M>p.</M>

So there must be some <M>n\in\nn</M> such that <M>B_n\seq\{x\}^c,</M> ie, <M>c\in B_n^c(\contra\bc x\in C^c).</M>

Expand Down Expand Up @@ -630,7 +630,7 @@
Y,</M> where <M>X\times Y</M> is endowed with the product topology.[2]
</E>@}</EBODY><SOLN/>
@{<WR>
Let <M>G=\{(x,f(x))~:~x\in X\}.</M> We take any <M>(a,b)\in (X\timesY)\seminus G.</M>
Let <M>G=\{(x,f(x))~:~x\in X\}.</M> We take any <M>(a,b)\in (X\times Y)\setminus G.</M>
So <M>b\neq f(a).</M> Since <M>Y</M> is <M>T_2,</M> hence can find two disjoint open sets <M>U</M> and <M>V</M> in <M>Y</M>
such that <M>f(a)\in U</M> and <M>b\in V.</M>
Expand Down Expand Up @@ -917,7 +917,7 @@

Then the subcollection <M>{\cal D}=\{B_n~:~n\in\nn\}</M> is again a base.
Clearly, <M>B_n\in\{\cal B}\seq\tau.</M>
Clearly, <M>B_n\in{\cal B}\seq\tau.</M>

Let <M>U\in\tau</M> and <M>x\in U.</M> Then <M>\exists n\in\nn ~~x\in C_n\seq U.</M>
</WR>@}</EXM>
Expand Down
25 changes: 0 additions & 25 deletions topo/topo2.rb.scrp
Original file line number Diff line number Diff line change
@@ -1,25 +0,0 @@
<BECAUSE>

</BECAUSE>
-------EOD-------
<EXM ref="2023.1f" paper="2023.1f"><EBODY>@{<E>
Let <M>(X,\tau)</M> be a co-countable space, where <M>X</M> is an
uncountable set. Then which of the following is true?
<VL>
<LI><M>(X,\tau)</M> is a first countable space.</LI>
<LI><M>(X,\tau)</M> is a Hausdorff space.</LI>
<LI>There exists a convergent sequence in <M>X</M> whose limit
is not unique.</LI>
<LI>A sequence <M>\{x_n\}</M> in <M>X</M> is convergent if and
only if there is some positive integer <M>m</M> such that for
all <M>n\geq m</M> <M>x_n=</M> constant.</LI>
</VL>
</E>@}</EBODY><SOLN/>khAli sheSerTAi Thik.</EXM>
-------EOD-------
<EXM ref="2021.3" paper="2021.3"><EBODY>@{<E>
Prove that a topological invariant is a metric invariant. Is the
converse ture? Justify.[3+2]
</E>@}</EBODY><SOLN/></EXM>
-------EOD-------

-------EOD-------
22 changes: 15 additions & 7 deletions topo/topo3.html
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ <h1><a

<p>
<b>EXAMPLE (2021.1h):</b>&nbsp;
If $\tau = \{\phi, \{a\},\{\a,b\},X\}$ is a topology on $X =
If $\tau = \{\phi, \{a\},\{a,b\},X\}$ is a topology on $X =
\{a,b,c\},$ then $(X,\tau)$ is

<li>compact and Hausdorff.</li>
Expand Down Expand Up @@ -317,8 +317,8 @@ <h1><a
<p></p>
<b>SOLUTION:</b>Continuous, কারণ এর গ্রাফ আঁকতে হলে পেন তুলতে হয় একমাত্র
domain-এ ফাঁক আছে যেখানে, সেখানে৷ Open নয়, কারণ
$(2.1,2.9)$ এখানে $open,$ কিন্তু এর image হল $\{2\},$
যেক্ষা মোটেই ${\mathbb R}$-এর মধ্যে open নয়৷ ///
$(2.1,2.9)$ এখানে open, কিন্তু এর image হল $\{2\},$
যেটা মোটেই ${\mathbb R}$-এর মধ্যে open নয়৷ ///
</p>

<p></p>
Expand Down Expand Up @@ -385,7 +385,7 @@ <h1><a
$a\in A$ and $b\in B.$
<p></p>
Clearly, this relation is reflexive and symmetric. Also it is transitive.
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Let $a\sim b$ and $b\sim c.$ Let, if possible, $a\not\sim c.$
<p></p>
Expand Down Expand Up @@ -419,12 +419,18 @@ <h1><a
<p></p>

<u>Second part</u>:
Since the elements of $\beta$ are all complements of closed sets (wrt $\tau$), hence $bb\subseteq \tau.$
Since the elements of $\beta$ are all complements of closed sets (wrt $\tau$), hence $\beta\subseteq \tau.$
<p></p>
So $\tau'\subseteq \tau.$
<p></p>

<u>Third part</u>:
<p></p>
Let $\{U_ \alpha~:~ \alpha\in \Lambda\}\subseteq \tau'$ be a cover for $X.$ Pick some
$U$ in this cover (possible since this cover cannot be empty, as $X\neq\phi$).
Then $U^c$ is compact in $(X,\tau)$ and has $\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\}$ as an open
cover (since $\tau'\subseteq\tau$). So we can extract a finite subcover $\{U_1,...,U_n\}$ for $U^c.$ Then $\{U_1,...,U_n\}\cup \{U\}$
is a finite subcover for $X$ in $(X,\tau'),$ completing the proof.
</font></b> ///
</p>

Expand Down Expand Up @@ -482,7 +488,7 @@ <h1><a
So $\{F_ \alpha^c~:~ \alpha\in \Lambda\}$ is an open cover of $X.$
<p></p>
Since $X$ is compact, there is a finite subcover, $\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\}$ ie,
$\cup _{i=1}^n F_ \alpha_i^c = X,$ ie, $\cap _{i=1}^n F_ \alpha_i = \phi (\contra$ FIP$).$
$\cup _{i=1}^n F_ {\alpha_i}^c = X,$ ie, $\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra$ FIP$).$
<p></p>
Conversely, if every family with FIP has non-empty intersection, then we shall show that $X$ must be compact.
<p></p>
Expand All @@ -508,6 +514,8 @@ <h1><a
<p></p>

<div class="box">Target</div>$\forall x\in K^c~~\exists U\in \tau~~x\in U\subseteq K^c.$
<p></p>

<div class="box">$\forall x$</div>Take any $x\in K^c.$
<p></p>
Then $\forall y\in K~~x\neq y.$
Expand Down Expand Up @@ -645,7 +653,7 @@ <h1><a
Let $\tau = \big\{~\{-\infty\}\cup{\mathbb N},~\{\infty\}\cup{\mathbb N},~\{-\infty,\infty\}\cup{\mathbb N}~\big\}\cup {\mathscr P}({\mathbb N}).$
<p></p>
Then $\tau$ is a topology on $X.$
<blockquote>
<blockquote class="scrpt">
<b>Because:</b>
Clearly, $\phi, X\in\tau.$
<p></p>
Expand Down
17 changes: 12 additions & 5 deletions topo/topo3.rb
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
@{<HEAD1>Compact</HEAD1>@}

<EXM ref="2021.1h" paper="2021.1h"><EBODY>@{<E>
If <M>\tau = \{\phi, \{a\},\{\a,b\},X\}</M> is a topology on <M>X =
If <M>\tau = \{\phi, \{a\},\{a,b\},X\}</M> is a topology on <M>X =
\{a,b,c\},</M> then <M>(X,\tau)</M> is
<VL>
<LI>compact and Hausdorff.</LI>
Expand Down Expand Up @@ -110,8 +110,8 @@
</VL>
</E>@}</EBODY><SOLN/>@{<E>Continuous</E>@}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra
@{<E>domain</E>@}-e f,nAk Achhe yekhAne, sekhAne. @{<E>Open</E>@} nay, kAraN
@{<M>(2.1,2.9)</M>@} ekhAne @{<M>open,</M>@} kintu er @{<E>image</E>@} hala @{<M>\{2\},</M>@}
yexA moTei @{<M>\rr</M>@}-er madhye @{<E>open</E>@} nay.</EXM>
@{<M>(2.1,2.9)</M>@} ekhAne @{<E>open,</E>@} kintu er @{<E>image</E>@} hala @{<M>\{2\},</M>@}
yeTA moTei @{<M>\rr</M>@}-er madhye @{<E>open</E>@} nay.</EXM>

<EXM ref="2023.1i" paper="2023.1i"><EBODY>@{<E>
Let <M>(X,\tau)</M> be an uncountable compact space
Expand Down Expand Up @@ -182,11 +182,17 @@
Hence <M>B_1\cap B_2\in \beta.</M> So <M>\beta</M> is a basis.
<U>Second part</U>:
Since the elements of <M>\beta</M> are all complements of closed sets (wrt <M>\tau</M>), hence <M>bb\seq \tau.</M>
Since the elements of <M>\beta</M> are all complements of closed sets (wrt <M>\tau</M>), hence <M>\beta\seq \tau.</M>
So <M>\tau'\seq \tau.</M>

<U>Third part</U>:

Let <M>\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau'</M> be a cover for <M>X.</M> Pick some
<M>U</M> in this cover (possible since this cover cannot be empty, as <M>X\neq\phi</M>).
Then <M>U^c</M> is compact in <M>(X,\tau)</M> and has <M>\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\}</M> as an open
cover (since <M>\tau'\seq\tau</M>). So we can extract a finite subcover <M>\{U_1,...,U_n\}</M> for <M>U^c.</M> Then <M>\{U_1,...,U_n\}\cup \{U\}</M>
is a finite subcover for <M>X</M> in <M>(X,\tau'),</M> completing the proof.
</WR>@}</EXM>
Expand Down Expand Up @@ -232,7 +238,7 @@
So <M>\{F_ \alpha^c~:~ \alpha\in \Lambda\}</M> is an open cover of <M>X.</M>
Since <M>X</M> is compact, there is a finite subcover, <M>\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\}</M> ie,
<M>\cup _{i=1}^n F_ \alpha_i^c = X,</M> ie, <M>\cap _{i=1}^n F_ \alpha_i = \phi (\contra</M> FIP<M>).</M>
<M>\cup _{i=1}^n F_ {\alpha_i}^c = X,</M> ie, <M>\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra</M> FIP<M>).</M>
Conversely, if every family with FIP has non-empty intersection, then we shall show that <M>X</M> must be compact.
Expand All @@ -255,6 +261,7 @@
Shall show that <M>K</M> is closed, ie, <M>K^c</M> is open, ie
<TGT>\forall x\in K^c~~\exists U\in \tau~~x\in U\seq K^c.</TGT>
<FLL>x</FLL>Take any <M>x\in K^c.</M>
Then <M>\forall y\in K~~x\neq y.</M>
Expand Down
20 changes: 13 additions & 7 deletions topo/topo3.rb.bkp
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
@{<HEAD1>Compact</HEAD1>@}

<EXM ref="2021.1h" paper="2021.1h"><EBODY>@{<E>
If <M>\tau = \{\phi, \{a\},\{\a,b\},X\}</M> is a topology on <M>X =
If <M>\tau = \{\phi, \{a\},\{a,b\},X\}</M> is a topology on <M>X =
\{a,b,c\},</M> then <M>(X,\tau)</M> is
<VL>
<LI>compact and Hausdorff.</LI>
Expand Down Expand Up @@ -110,8 +110,8 @@ Then which of the following is true?
</VL>
</E>@}</EBODY><SOLN/>@{<E>Continuous</E>@}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra
@{<E>domain</E>@}-e f,nAk Achhe yekhAne, sekhAne. @{<E>Open</E>@} nay, kAraN
@{<M>(2.1,2.9)</M>@} ekhAne @{<M>open,</M>@} kintu er @{<E>image</E>@} hala @{<M>\{2\},</M>@}
yexA moTei @{<M>\rr</M>@}-er madhye @{<E>open</E>@} nay.</EXM>
@{<M>(2.1,2.9)</M>@} ekhAne @{<E>open,</E>@} kintu er @{<E>image</E>@} hala @{<M>\{2\},</M>@}
yeTA moTei @{<M>\rr</M>@}-er madhye @{<E>open</E>@} nay.</EXM>

<EXM ref="2023.1i" paper="2023.1i"><EBODY>@{<E>
Let <M>(X,\tau)</M> be an uncountable compact space
Expand Down Expand Up @@ -182,11 +182,17 @@ Hence <M>B_1\cap B_2 = (K_1\cup K_2)^c = K^c,</M> where <M>K=K_1\cup K_2</M> i
Hence <M>B_1\cap B_2\in \beta.</M> So <M>\beta</M> is a basis.

<U>Second part</U>:
Since the elements of <M>\beta</M> are all complements of closed sets (wrt <M>\tau</M>), hence <M>bb\seq \tau.</M>
Since the elements of <M>\beta</M> are all complements of closed sets (wrt <M>\tau</M>), hence <M>\beta\seq \tau.</M>

So <M>\tau'\seq \tau.</M>

<U>Third part</U>:

Let <M>\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau'</M> be a cover for <M>X.</M> Pick some
<M>U</M> in this cover (possible since this cover cannot be empty, as <M>X\neq\phi</M>).
Then <M>U^c</M> is compact in <M>(X,\tau)</M> and has <M>\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\}</M> as an open
cover (since <M>\tau'\seq\tau</M>). So we can extract a finite subcover <M>\{U_1,...,U_n\}</M> for <M>U^c.</M> Then <M>\{U_1,...,U_n\}\cup \{U\}</M>
is a finite subcover for <M>X</M> in <M>(X,\tau'),</M> completing the proof.
</WR>@}</EXM>


Expand Down Expand Up @@ -232,7 +238,7 @@ Let, if possible, <M>\cap _{\alpha\in \Lambda} F_ \alpha = \phi.</M> Then, de M
So <M>\{F_ \alpha^c~:~ \alpha\in \Lambda\}</M> is an open cover of <M>X.</M>

Since <M>X</M> is compact, there is a finite subcover, <M>\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\}</M> ie,
<M>\cup _{i=1}^n F_ \alpha_i^c = X,</M> ie, <M>\cap _{i=1}^n F_ \alpha_i = \phi (\contra</M> FIP<M>).</M>
<M>\cup _{i=1}^n F_ {\alpha_i}^c = X,</M> ie, <M>\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra</M> FIP<M>).</M>

Conversely, if every family with FIP has non-empty intersection, then we shall show that <M>X</M> must be compact.

Expand Down Expand Up @@ -336,13 +342,13 @@ samAdhAne khAli @{<M>f</M>@}-er @{<E>domain</E>@}-TA ye @{<M>T_2</M>@}, eTukui l
<EXM ref="2023.15a" paper="2023.15a"><EBODY>@{<E>
Prove that a real valued continuous function <M>f</M> on a
compact set <M>(X,\tau)</M> attains its greatest value. [2]
</E>@}</EBODY><SOLN/></EXM>
</E>@}</EBODY><SOLN/>@{<E>Standard result.</E>@}</EXM>

<EXM ref="2023.16a" paper="2023.16a"><EBODY>@{<E>
Prove that every closed and bounded interval of the real
line<M>\rr</M> (i.e., <M>\rr</M> with the usual topology) is
compact. [3]
</E>@}</EBODY><SOLN/></EXM>
</E>@}</EBODY><SOLN/>@{<E>Standard result.</E>@}</EXM>


<EXM ref="2021.13a" paper="2021.13a"><EBODY>@{<E>
Expand Down
2 changes: 1 addition & 1 deletion topo/topo3.rb.mrk
Original file line number Diff line number Diff line change
@@ -1 +1 @@
345
265
Loading

0 comments on commit 5a0e01a

Please sign in to comment.