Skip to content
/ MODNAS Public

Official Repo for "Multi-objective Differentiable Neural Architecture Search"

Notifications You must be signed in to change notification settings

automl/MODNAS

Repository files navigation

MODNAS

Official repo for the paper MODNAS: Multi-objective Differentiable Neural Architecture Search

title

Overview

  1. Installation & Dependencies
  2. Working Tree and Dataset Preparation
  3. Experiments
  4. Plotting
  5. Baselines

1. Installation & Dependencies

To install the dependencies:

conda create --name modnas python=3.9
conda activate modnas
pip install -r requirements.txt

2. Working Tree and Dataset Preparation

Code working tree

├── predictors
│   ├── hat
│   ├── help
│   ├── nb201
│   ├── ofa
├── hypernetworks
│   ├── models
│   ├── pretrain_hpns
├── scripts
├── optimizers
│   ├── help
│   ├──mgd
│   ├── mixop
│   ├── sampler
│   ├── optim_factory.py
├── plotting
├── search_spaces
│   ├── hat
│   ├── MobileNetV3
│   ├── nb201

The predictors folder contains the meta predictors for different search spaces

The hypernetworks folder contains the architectures of our hypernetworks for different search spaces

The scripts folder contains the scripts to batch different jobs

The optimizers folder contains the different one-shot and black box optimizers for architecture search

The plotting folder contains the scripts used for radar plots

The search_spaces folder contains the definition of the search spaces search spaces nasbench201, mobilenetv3, hardware aware transformers

The predictor_data_utils and hypernetwork_data_utils folder contains the pretrained predictors and hypernetworks respectively

The baselines folder contains the scripts to run the synetune baselines for different search spaces.

Dataset preparation

CIFAR10 and CIFAR100 datasets will be automatically downloaded Download the imagenet-1k from here and update the path to the dataset in the training script. The dataset Imagenet16-120

Follow the instructions here to download the binary files for the different machine translation datasets.

3. Experiments

Pretrain Hypernetworks for NAS-Bench-201, MobileNetV3, Hardware-Aware-Transformers

python hypernetworks/pretrain_hpns/pretrain_hpns_nb201.py
python hypernetworks/pretrain_hpns/pretrain_hpns_ofa.py
python hypernetworks/pretrain_hpns/pretrain_hpns_hat.py

Pretrain Predictors for NAS-Bench-201, MobileNetV3, Hardware-Aware-Transformers

python predictors/nb201/train/train_predictor.py
python predictors/ofa/train/train_ofa_predictor.py
python predictors/hat/train_latency_predictor.py --task wmt14.en-de

Search

Search on the NB201 search space (across 13 devices)

python search_spaces/nb201/search_nb201_mgd.py \
    --save mgd-100epochs \
    --wandb_name "modnas-nb201-100epochs" \
    --optimizer_type "reinmax" \
    --arch_weight_decay 0.09 \
    --train_portion 0.5 \
    --learning_rate 0.025 \
    --learning_rate_min 0.001 \
    --seed 9001 \
    --epochs 100 \
    --load_path "predictor_data_utils/nb201/predictor_meta_learned.pth" \
    --w_grad_update_method "mean" \
    --hpn_grad_update_method "mgd" \
    --weight_decay 0.0027

Search on the MobileNetV3 search space (across 11 devices)

python -m torch.distributed.launch --nproc_per_node=8 --use_env search_spaces/MobileNetV3/search/mobilenet_search_base.py --one_shot_opt reinmax --opt_strategy "simultaneous" --hpn_type meta --use_pretrained_hpn 

Search on the Hardware Aware Transformers (HAT) search space (across 2 devices)

python search_spaces/hat/train.py --configs=search_spaces/hat/configs/wmt14.en-de/supertransformer/space0.yml

Search on the HW-GPT-Bench search space (across 5 gpu devices)

Download the pretrained supernet from HW-GPT-Bench. Download device embeddings and processed dataset from here

python -u search_spaces/gpt/train_llm_configurable_scratch.py -c juwels_owt_sw_s.yaml 

4. Bash scripts

The scripts/ folder contains slurm scripts to launch the above search scripts

5. Evaluation

For NB201 we evaluate the hypervolume during training

For MobileNetV3 and HAT search spaces, obtain the architectures on the Pareto-Front using:

python evaluation/get_archs_ofa.py
python evaluation/get_archs_hat.py  --config-file search_spaces/hat/configs/wmt14.en-de/supertransformer/space0.yml --arch transformersuper_wmt_en_de2

To evaluate the archs from MobileNetV3 space:

python search_spaces/MobileNetV3/eval_ofa_net.py --net ofa_mbv3_d234_e346_k357_w1.2

To evaluate the archs from HAT space:

python search_spaces/hat/eval_archs_hat.py 

We then use the scoring protocol for BLEU and Sacre-BLEU from HAT to score the evaluations

6. Plotting

To make the radar plots we use the file plotting/plot_radar.py

7. Baselines

The baselines folder and the baseline_scripts folder contains the code to run different baselines on all different search spaces.

About

Official Repo for "Multi-objective Differentiable Neural Architecture Search"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages