Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[djl] patch releases for djl-lmi container v28-v31 #4483

Merged
merged 1 commit into from
Jan 8, 2025

Conversation

siddvenk
Copy link
Contributor

@siddvenk siddvenk commented Jan 8, 2025

GitHub Issue #, if available:

Note:

  • If merging this PR should also close the associated Issue, please also add that Issue # to the Linked Issues section on the right.

  • All PR's are checked weekly for staleness. This PR will be closed if not updated in 30 days.

Description

Tests run

NOTE: By default, docker builds are disabled. In order to build your container, please update dlc_developer_config.toml and specify the framework to build in "build_frameworks"

  • I have run builds/tests on commit for my changes.
Confused on how to run tests? Try using the helper utility...

Assuming your remote is called origin (you can find out more with git remote -v)...

  • Run default builds and tests for a particular buildspec - also commits and pushes changes to remote; Example:

python src/prepare_dlc_dev_environment.py -b </path/to/buildspec.yml> -cp origin

  • Enable specific tests for a buildspec or set of buildspecs - also commits and pushes changes to remote; Example:

python src/prepare_dlc_dev_environment.py -b </path/to/buildspec.yml> -t sanity_tests -cp origin

  • Restore TOML file when ready to merge

python src/prepare_dlc_dev_environment.py -rcp origin

NOTE: If you are creating a PR for a new framework version, please ensure success of the standard, rc, and efa sagemaker remote tests by updating the dlc_developer_config.toml file:

Expand
  • sagemaker_remote_tests = true
  • sagemaker_efa_tests = true
  • sagemaker_rc_tests = true

Additionally, please run the sagemaker local tests in at least one revision:

  • sagemaker_local_tests = true

Formatting

DLC image/dockerfile

Builds to Execute

Expand

Fill out the template and click the checkbox of the builds you'd like to execute

Note: Replace with <X.Y> with the major.minor framework version (i.e. 2.2) you would like to start.

  • build_pytorch_training_<X.Y>_sm

  • build_pytorch_training_<X.Y>_ec2

  • build_pytorch_inference_<X.Y>_sm

  • build_pytorch_inference_<X.Y>_ec2

  • build_pytorch_inference_<X.Y>_graviton

  • build_tensorflow_training_<X.Y>_sm

  • build_tensorflow_training_<X.Y>_ec2

  • build_tensorflow_inference_<X.Y>_sm

  • build_tensorflow_inference_<X.Y>_ec2

  • build_tensorflow_inference_<X.Y>_graviton

Additional context

PR Checklist

Expand
  • I've prepended PR tag with frameworks/job this applies to : [mxnet, tensorflow, pytorch] | [ei/neuron/graviton] | [build] | [test] | [benchmark] | [ec2, ecs, eks, sagemaker]
  • If the PR changes affects SM test, I've modified dlc_developer_config.toml in my PR branch by setting sagemaker_tests = true and efa_tests = true
  • If this PR changes existing code, the change fully backward compatible with pre-existing code. (Non backward-compatible changes need special approval.)
  • (If applicable) I've documented below the DLC image/dockerfile this relates to
  • (If applicable) I've documented below the tests I've run on the DLC image
  • (If applicable) I've reviewed the licenses of updated and new binaries and their dependencies to make sure all licenses are on the Apache Software Foundation Third Party License Policy Category A or Category B license list. See https://www.apache.org/legal/resolved.html.
  • (If applicable) I've scanned the updated and new binaries to make sure they do not have vulnerabilities associated with them.

NEURON/GRAVITON Testing Checklist

  • When creating a PR:
  • I've modified dlc_developer_config.toml in my PR branch by setting neuron_mode = true or graviton_mode = true

Benchmark Testing Checklist

  • When creating a PR:
  • I've modified dlc_developer_config.toml in my PR branch by setting ec2_benchmark_tests = true or sagemaker_benchmark_tests = true

Pytest Marker Checklist

Expand
  • (If applicable) I have added the marker @pytest.mark.model("<model-type>") to the new tests which I have added, to specify the Deep Learning model that is used in the test (use "N/A" if the test doesn't use a model)
  • (If applicable) I have added the marker @pytest.mark.integration("<feature-being-tested>") to the new tests which I have added, to specify the feature that will be tested
  • (If applicable) I have added the marker @pytest.mark.multinode(<integer-num-nodes>) to the new tests which I have added, to specify the number of nodes used on a multi-node test
  • (If applicable) I have added the marker @pytest.mark.processor(<"cpu"/"gpu"/"eia"/"neuron">) to the new tests which I have added, if a test is specifically applicable to only one processor type

By submitting this pull request, I confirm that my contribution is made under the terms of the Apache 2.0 license. I confirm that you can use, modify, copy, and redistribute this contribution, under the terms of your choice.

@siddvenk siddvenk requested review from a team as code owners January 8, 2025 16:56
@aws-deep-learning-containers-ci aws-deep-learning-containers-ci bot added the Size:S Determines the size of the PR label Jan 8, 2025
@siddvenk siddvenk merged commit 5f15f85 into aws:master Jan 8, 2025
30 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Size:S Determines the size of the PR
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants