Skip to content

Commit

Permalink
add llama3.2 GPU example (intel#12137)
Browse files Browse the repository at this point in the history
* add llama3.2 GPU example

* change prompt format reference url

* update

* add Meta-Llama-3.2-1B-Instruct sample output

* update wording
  • Loading branch information
ch1y0q authored Sep 29, 2024
1 parent f71b38a commit 17c23cd
Show file tree
Hide file tree
Showing 5 changed files with 249 additions and 1 deletion.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) |
| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) |
| LLaMA 3.1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3.1) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.1) |
| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) |
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm2) |
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm3) |
Expand Down
1 change: 1 addition & 0 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) |
| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) |
| LLaMA 3.1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3.1) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.1) |
| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) |
| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm2) |
| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm3) |
Expand Down
2 changes: 1 addition & 1 deletion python/llm/example/GPU/HuggingFace/LLM/llama3.1/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Llama3.1
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.1 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) as a reference Llama3.1 models.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.1 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) as a reference Llama3.1 model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand Down
155 changes: 155 additions & 0 deletions python/llm/example/GPU/HuggingFace/LLM/llama3.2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# Llama3.2
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-3B-Instruct) and [meta-llama/Meta-Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct) as reference Llama3.2 models.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3.2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0
pip install accelerate==0.33.0
pip install trl
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0
pip install accelerate==0.33.0
pip install trl
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2 model (e.g. `meta-llama/Meta-Llama-3.2-3B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3.2-3B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output
#### [meta-llama/Meta-Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-3B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence, such as learning, problem-solving, and
```

#### [meta-llama/Meta-Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
-------------------- Output (skip_special_tokens=False) --------------------
<|begin_of_text|><|begin_of_text|><|start_header_id|>user<|end_header_id|>
What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that typically require human intelligence, such as learning, problem-solving, and decision
```
91 changes: 91 additions & 0 deletions python/llm/example/GPU/HuggingFace/LLM/llama3.2/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/
DEFAULT_SYSTEM_PROMPT = """\
"""

def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
prompt_texts = [f'<|begin_of_text|>']

if system_prompt != '':
prompt_texts.append(f'<|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|>')

for history_input, history_response in chat_history:
prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{history_input.strip()}<|eot_id|>')
prompt_texts.append(f'<|start_header_id|>assistant<|end_header_id|>\n\n{history_response.strip()}<|eot_id|>')

prompt_texts.append(f'<|start_header_id|>user<|end_header_id|>\n\n{user_input.strip()}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n')
return ''.join(prompt_texts)

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3.2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-3.2-3B-Instruct",
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Llama-3.2-3B-Instruct`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)

input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict)

# start inference
st = time.time()
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output (skip_special_tokens=False)', '-'*20)
print(output_str)

0 comments on commit 17c23cd

Please sign in to comment.