Skip to content

Commit

Permalink
Add minicpm3 gpu example (intel#12114)
Browse files Browse the repository at this point in the history
* add minicpm3 gpu example

* update GPU example

* update

---------

Co-authored-by: Huang, Xinshengzi <[email protected]>
  • Loading branch information
ch1y0q and hxsz1997 authored Sep 26, 2024
1 parent 77af9bc commit 2ea13d5
Show file tree
Hide file tree
Showing 4 changed files with 230 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -322,6 +322,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
| MiniCPM3 | | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm3) |
| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
Expand Down
1 change: 1 addition & 0 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
| MiniCPM3 | | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm3) |
| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
Expand Down
146 changes: 146 additions & 0 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
# MiniCPM3
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B) as a reference MiniCPM3 model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM3 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install jsonschema datamodel_code_generator
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install jsonschema datamodel_code_generator
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is AI?'
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM3 model (e.g. `openbmb/MiniCPM3-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM3-4B'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output
#### [openbmb/MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>user
AI是什么?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<s><|im_start|> user
AI是什么?<|im_end|>
<|im_start|> assistant
AI,即人工智能(Artificial Intelligence),是指由人类创造的、能够模拟人类智能的相关理论和实践的一门新兴技术。它使计算机 或其他
```

```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>user
What is AI?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<s><|im_start|> user
What is AI?<|im_end|>
<|im_start|> assistant
AI, or Artificial Intelligence, is a field of computer science that emphasizes the creation of intelligent machines capable of performing tasks that typically require human intelligence. These tasks include
```
82 changes: 82 additions & 0 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm3/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM3-4B",
help='The huggingface repo id for the MiniCPM3 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
optimize_model=True,
use_cache=True)

model = model.half().to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
# here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM3-4B#inference-with-transformers
chat = [
{ "role": "user", "content": args.prompt },
]

prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')

# ipex_llm model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
# start inference
st = time.time()

output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=False)

print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)

0 comments on commit 2ea13d5

Please sign in to comment.