Skip to content

Latest commit

 

History

History

question_answering

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Data format

The finetuning script supports only json as input file format. The input file structure should be the same as standard QA datasets like SQuAD v2.0.

Training & Evaluation

To see list of all available options, do python question_answering.py -h. There are two ways to provide input data files to the script:

  • with flag --dataset_dir <path> where <path> points to the directory containing files with prefix train, validation and test.
  • with flags --train_file <path> / --train_file <path> / --validation_file <path> / --test_file <path>.

For the following commands, we are going to use the --dataset_dir <path> to provide input files.

Finetuning

For finetuning on single GPU, a minimal example is as follows:

$ python ./question_answering.py \
    --model_name_or_path "csebuetnlp/banglabert" \
    --dataset_dir "sample_inputs/" \
    --output_dir "outputs/" \
    --learning_rate=2e-5 \
    --warmup_ratio 0.1 \
    --gradient_accumulation_steps 2 \
    --weight_decay 0.1 \
    --lr_scheduler_type "linear"  \
    --per_device_train_batch_size=16 \
    --per_device_eval_batch_size=16 \
    --max_seq_length 512 \
    --logging_strategy "epoch" \
    --save_strategy "epoch" \
    --evaluation_strategy "epoch" \
    --num_train_epochs=3 \ 
    --do_train --do_eval

For a detailed example, refer to trainer.sh.

Evaluation

  • To calculate metrics on test set / inference on raw data, use the following snippet:
$ python ./question_answering.py \
    --model_name_or_path <path/to/trained/model> \
    --dataset_dir "sample_inputs/" \
    --output_dir "outputs/" \
    --per_device_eval_batch_size=16 \
    --overwrite_output_dir \
    --do_predict

For a detailed example, refer to evaluate.sh.