Skip to content

Secular equations of motion for the evolution of triple systems with tidal friction

Notifications You must be signed in to change notification settings

djmunoz/kozaipy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KOZAIPY - Secular equations of motion for the evolution of triple systems with tidal friction

Welcome to KozaiPy!

Overview

KozaiPy is a Python package for the integration of the secular equations of motion of few-body hierarchical systems.

Installation

You need to have git installed. In addition, you need the NumPy and SciPy Python packages.

git clone https://github.com/djmunoz/kozaipy.git

cd kozaipy

sudo python setup.py install

That is all!

Examples

  1. Orbital flips

    To run a secular triple (e.g. Fig.3 of Naoz et al 2013). First setup the triple

as:

import kozaipy as kp
import numpy as np

trip = kp.Triple(m0=1.0,m1=0.001,m2=0.04,a1=6.0,a2=100.0,e1=0.001,e2=0.6,\
       I=65.0 * np.pi/180.0, g1=45.0 * np.pi/180.0,g2=0)

And then evolve the system for 2.5e7 years

sol = trip.integrate(timemin=0.0,timemax=2.5e7*365.25,Nevals=30000,octupole_potential=True)

The equations of motion are in the 'orbital vector form' (e.g., Eggleton, Kiseleva & Hut 1998; Fabrycky & Tremaine, 2007; Tremaine & Yavetz, 2014) and so is the solution output. If you want to analyze the orbital elements, first do:

sol.to_elements()

To plot the inclination and eccentricity of the inner orbit, simply do

import matplotlib.pyplot as plt

time = sol.vectordata.time
incl1= sol.elementdata.I1
ecc1 = sol.elementdata.e1

fig = plt.figure(figsize=(15,5))
ax = plt.subplot(121)
ax.set_xlabel("time[yr]")
ax.set_ylabel("inclination[deg]")
ax.plot(time/365.25,incl1)


ax = plt.subplot(122)
ax.set_xlabel("time[yr]")
ax.set_ylabel("eccentricity")
ax.plot(time/365.25,ecc1)
plt.show()

You should get something like this:

example_figures/orbital_flips.png

You can save the data into a text file by doing

sol.save_to_file("test.txt",Nlines=None)

where 'Nlines' allows you to set a lower number of lines than the original solution.

  1. High-e migration: HD80606b

Following the model of Wu & Murray (2003), we can setup a triple that resultins in a configuration similar to that of HD80606b

trip = kp.Triple(m0=1.1,m1=0.007443,m2=1.1,a1=5.0,a2=1000.0,e1=0.1,e2=0.5,I=85.6 * np.pi/180.0, \
       g1=45.0 * np.pi/180.0,g2=0.0,\
       type0='star',type1='planet',\
       spinorbit_align0=False,\
       spinorbit_align1=True,\
       spin_rate0 = 2 * np.pi/20, spin_rate1 = 2 * np.pi/0.417,
       R0=kp.constants.Rsun,R1=kp.constants.Rsun/10,
       k2_0 = 0.014, k2_1=0.25, tv0=2.0e4, tv1=0.365242,rg_0=0.08,rg_1=0.25)

We integrate this sytem in time including tidal friction. For that, we turn on the two options 'short_range_forces_conservative' and 'short_range_forces_dissipative'

sol = trip.integrate(timemin=0.0,timemax=3.4e9*365.25,Nevals=12000,\
       octupole_potential=False,\
       short_range_forces_conservative=True, \
       short_range_forces_dissipative=True)

Note that we also turn off the octupole potential for now, for easier comparison with Wu & Murray (2003) and Fabrycky & Tremaine (2007):

example_figures/orbital_decay.png

The dissipative forces make the system of ODEs stiff, and turning them on can slow down this integration from a few seconds to up to an hour. I am still working on this, but a speed up will probably require a purpose-specific ODE solver rather than using the ODEPACK routines implemented in scipy.

About

Secular equations of motion for the evolution of triple systems with tidal friction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages