Skip to content

dki-lab/joint-kb-text-embedding

Repository files navigation

joint-kb-text-embedding

Code for the ACL 2021 paper A Systematic Investigation of KB-Text Embedding Alignment at Scale paper link slides

Authors: Vardaan Pahuja, Yu Gu, Wenhu Chen, Mehdi Bahrami, Lei Liu, Wei-Peng Chen and Yu Su
This implementation is based on the DGL-KE and Wikipedia2Vec libraries.

Installation

Install Python dependencies

pip install -r requirements.txt

Install wiki2vec extension

cd wikinew/
./cythonize.sh
python setup.py install

Data preprocessing

Download data

  1. Download Wikidata Dec. 2020 triple files from here and store directory path into environment variable WIKIDATA_TRIPLES_DIR

  2. Download pre-processed Wikipedia files from here and store directory path into environment variable WIKIPEDIA_PROC_DATA

  3. Download Few-shot link prediction dataset from here and store directory path in the environment variable WIKIDATA_FS_LP_DIR

  4. Download Analogical Reasoning dataset from here and store directory path in the environment variable ANALOGY_DATASET_DIR

  5. Download wikipedia_links.json from here and save it in the dir. corresponding to the environment variable WIKIDATA_PROC_JSON_DIR.

  6. Download rel_type_dict.pickle from here and save it in the dir. corresponding to the environment variable WIKIDATA_PROC_JSON_DIR.

  7. Download entity_child_dict.pickle from here and save it in the dir. corresponding to the environment variable WIKIDATA_PROC_JSON_DIR.

  8. Download ent_counter_names.json from here and save it in the dir. corresponding to the environment variable WIKIDATA_PROC_JSON_DIR.

  9. Download Wikidata March 2020 triple files from here and store directory path in the environment variable WIKIDATA_MAR_20_TRIPLES_DIR

  10. Download the COVID case-study triples dir. from here and and store the dir. name in the environment variable COVID_TRIPLES_DIR.

Pre-process data

This step is not needed if you download the pre-processed data as above.

Download raw Wikidata and Wikipedia dumps

  1. Download Wikidata raw dump file from the given link (Dec. 2020 version or March 2020 version) and set environment variable RAW_WIKIDATA_JSON_FILE to its path.
  2. Download Wikipedia raw dump file from here and set environment variable DUMP_FILE to its path.

Pre-process Wikidata

mkdir $WIKIDATA_PROC_JSON_DIR
mkdir $WIKIDATA_TRIPLES_DIR
python utils/create_proc_wikidata.py --input_json_file $RAW_WIKIDATA_JSON_FILE --out_dir $WIKIDATA_PROC_JSON_DIR
python utils/generate_triples.py $WIKIDATA_PROC_JSON_DIR $WIKIDATA_TRIPLES_DIR/triples.tsv

# We shuffle triples.tsv and split it into train-valid-test files (wikidata_train.tsv wikidata_valid.tsv wikidata_test.tsv) in the ratio 0.85:0.075:0.075 for training the embeddings corresponding to the Analogical Reasoning experiment.

# We use the triples.tsv as the set of training triples for COVID-19 case study.

python utils/create_wikipedia_wikidata_link_dict.py --input_json_file $RAW_WIKIDATA_JSON_FILE --out_links_file $WIKIDATA_PROC_JSON_DIR/wikipedia_links.json
python utils/create_entity_type_dict.py --wikidata-triples-file $WIKIDATA_TRIPLES_DIR/wikidata_train.tsv --out-dir $WIKIDATA_PROC_JSON_DIR
python utils/create_rel_type_dict.py --wikidata-triples-file $WIKIDATA_TRIPLES_DIR/wikidata_train.tsv --entity-type-dict-file $WIKIDATA_PROC_JSON_DIR/entity_type_dict.json --out-dir $WIKIDATA_PROC_JSON_DIR
python utils/create_counter_domain_intersection.py --triples-file $WIKIDATA_TRIPLES_DIR/wikidata_train.tsv --wiki-link-file $WIKIDATA_PROC_JSON_DIR/wikipedia_links.json --entity-file $WIKIDATA_TRIPLES_DIR/entities.tsv --dict-file $WIKIPEDIA_PROC_DATA/dict_file --out-dir $WIKIDATA_PROC_JSON_DIR

Pre-process wikipedia raw dump

mkdir $WIKIPEDIA_PROC_DATA
wikipedia2vec build-dump-db $DUMP_FILE $WIKIPEDIA_PROC_DATA/db_file
wikipedia2vec build-dictionary $WIKIPEDIA_PROC_DATA/db_file $WIKIPEDIA_PROC_DATA/dict_file
wikipedia2vec build-link-graph $WIKIPEDIA_PROC_DATA/db_file $WIKIPEDIA_PROC_DATA/dict_file $WIKIPEDIA_PROC_DATA/link_graph_file
wikipedia2vec build-mention-db $WIKIPEDIA_PROC_DATA/db_file $WIKIPEDIA_PROC_DATA/dict_file $WIKIPEDIA_PROC_DATA/mentiondb_file

Experiments

Few-shot Link Prediction

Setup environment variables

Set the environment variables WIKIDATA_FS_LP_DIR, WIKIDATA_PROC_JSON_DIR, WIKIPEDIA_PROC_DATA, SAVE_DIR, $BALANCE_PARAM and navigate to the directory of the desired kb-text alignment method.

Run training for train set (Full)

python train.py --model_name TransE_l2 --batch_size 1000 --log_interval 10000 --neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 300 --gamma 19.9 --lr 0.25 --batch_size_eval 16 --data_path $WIKIDATA_FS_LP_DIR --data_files wikidata_train_full.tsv wikidata_test.tsv wikidata_test.tsv --format raw_udd_hrt --dump-db-file $WIKIPEDIA_PROC_DATA/db_file --dictionary-file $WIKIPEDIA_PROC_DATA/dict_file --mention-db-file $WIKIPEDIA_PROC_DATA/mention_db_file --link-graph-file $WIKIPEDIA_PROC_DATA/link_graph_file --num_thread 1 --neg_deg_sample --save_path $SAVE_DIR --balance_param $BALANCE_PARAM --reg-loss-start-epoch 0 --n_iters 20 --num_proc 8 --num_proc_train 32 --timeout 200 --wiki-link-file $WIKIDATA_PROC_JSON_DIR/wikipedia_links.json

Run training for train set (support)

python train.py --model_name TransE_l2 --batch_size 1000 --log_interval 10000 --neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 300 --gamma 19.9 --lr 0.25 --batch_size_eval 16 --data_path $WIKIDATA_FS_LP_DIR --data_files wikidata_train_support.tsv wikidata_test.tsv wikidata_test.tsv --format raw_udd_hrt --dump-db-file $WIKIPEDIA_PROC_DATA/db_file --dictionary-file $WIKIPEDIA_PROC_DATA/dict_file --mention-db-file $WIKIPEDIA_PROC_DATA/mention_db_file --link-graph-file $WIKIPEDIA_PROC_DATA/link_graph_file --num_thread 1 --neg_deg_sample --save_path $SAVE_DIR --balance_param $BALANCE_PARAM --reg-loss-start-epoch 0 --n_iters 20 --num_proc 8 --num_proc_train 32 --timeout 200 --wiki-link-file $WIKIDATA_PROC_JSON_DIR/wikipedia_links.json

Run link prediction evaluation for Test set (Both in support)

python eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 16 --data_path $WIKIDATA_FS_LP_DIR --data_files wikidata_train_full.tsv wikidata_test.tsv wikidata_test.tsv --format raw_udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $WIKIDATA_FS_LP_DIR/wikidata_test_support.tsv --model_path $SAVE_DIR/ --rel-type-dict-file $WIKIDATA_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_PROC_JSON_DIR/entity_child_dict.json --sampler-type both

Run link prediction evaluation for Test set (Missing support)

python eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 16 --data_path $WIKIDATA_FS_LP_DIR --data_files wikidata_train_full.tsv wikidata_test.tsv wikidata_test.tsv --format raw_udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $WIKIDATA_FS_LP_DIR/wikidata_test_missing_support.tsv --model_path $SAVE_DIR/ --rel-type-dict-file $WIKIDATA_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_PROC_JSON_DIR/entity_child_dict.json --sampler-type both

Analogical Reasoning

Setup environment variables

Set the environment variables WIKIDATA_TRIPLES_DIR, WIKIDATA_PROC_JSON_DIR, WIKIPEDIA_PROC_DATA, SAVE_DIR, $BALANCE_PARAM and navigate to the directory of the desired kb-text alignment method.

Run training

python train.py --model_name TransE_l2 --batch_size 1000 --log_interval 10000 --neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 300 --gamma 19.9 --lr 0.25 --batch_size_eval 16 --data_path $WIKIDATA_TRIPLES_DIR --data_files wikidata_train.tsv wikidata_valid.tsv wikidata_test.tsv --format raw_udd_hrt --dump-db-file $WIKIPEDIA_PROC_DATA/db_file --dictionary-file $WIKIPEDIA_PROC_DATA/dict_file --mention-db-file $WIKIPEDIA_PROC_DATA/mention_db_file --link-graph-file $WIKIPEDIA_PROC_DATA/link_graph_file --num_thread 1 --neg_deg_sample --save_path $SAVE_DIR --balance_param $BALANCE_PARAM --reg-loss-start-epoch 0 --n_iters 20 --num_proc 8 --num_proc_train 32 --timeout 200 --wiki-link-file $WIKIDATA_PROC_JSON_DIR/wikipedia_links.json

Run evaluation

sh utils/analogy_complete_exp.sh

Pre-trained embeddings

The pre-trained embeddings for each of the 4 alignment methods can be downloaded below. The description of the filenames is as follows:

  1. TransE_l2_emb0_sg.npy: Skip-gram Embeddings for (words + entities), Word ID to name mapping file Entity ID to name mapping file
  2. TransE_l2_entity.npy: TransE embeddings for entities, Entity ID to name mapping file
  3. TransE_l2_relation.npy: TransE embeddings for relations, Relation ID to name mapping file

Alignment using Entity Names (balance param.=1.0)

Download Link

Same Embedding alignment

Download Link

Projection alignment (balance param.=1e-3)

Download Link

Alignment using Wikipedia Anchors (balance param.=1.0)

Download Link

Covid case-study

Run training

python train.py --model_name TransE_l2 --batch_size 1000 --log_interval 10000 --neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 300 --gamma 19.9 --lr 0.25 --batch_size_eval 16 --data_path $WIKIDATA_MAR_20_TRIPLES_DIR --data_files wikidata_train.tsv --format raw_udd_hrt --dump-db-file $WIKIPEDIA_PROC_DATA/db_file --dictionary-file $WIKIPEDIA_PROC_DATA/dict_file --mention-db-file $WIKIPEDIA_PROC_DATA/mention_db_file --link-graph-file $WIKIPEDIA_PROC_DATA/link_graph_file --num_thread 1 --neg_deg_sample --save_path $SAVE_DIR --balance_param $BALANCE_PARAM --reg-loss-start-epoch 0 --n_iters 20 --num_proc 8 --num_proc_train 32 --timeout 200 --wiki-link-file $WIKIDATA_MAR_20_PROC_JSON_DIR/wikipedia_links.json

Run Evaluation

# P5642 (Risk Factor)
python -u eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 1 --data_path $WIKIDATA_MAR_20_TRIPLES_DIR --data_files wikidata_train.tsv wikidata_test.tsv wikidata_test.tsv --format udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $COVID_TRIPLES_DIR/wikidata_test_covid_P5642.tsv --model_path $SAVE_DIR --rel-type-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/entity_child_dict.json --sampler-type tail

# P780 (Symptoms)
python -u eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 1 --data_path $WIKIDATA_MAR_20_TRIPLES_DIR --data_files wikidata_train.tsv wikidata_test.tsv wikidata_test.tsv --format udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $COVID_TRIPLES_DIR/wikidata_test_covid_P780.tsv --model_path $SAVE_DIR --rel-type-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/entity_child_dict.json --sampler-type tail

# P509 (Cause of death)
python -u eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 1 --data_path $WIKIDATA_MAR_20_TRIPLES_DIR --data_files wikidata_train.tsv wikidata_test.tsv wikidata_test.tsv --format udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $COVID_TRIPLES_DIR/wikidata_test_covid_P509.tsv --model_path $SAVE_DIR --rel-type-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/entity_child_dict.json --sampler-type head

# P1050 (medical condition)
python -u eval_type_constraint.py --model_name TransE_l2 --hidden_dim 300 --gamma 19.9 --batch_size_eval 1 --data_path $WIKIDATA_MAR_20_TRIPLES_DIR --data_files wikidata_train.tsv wikidata_test.tsv wikidata_test.tsv --format udd_hrt --num_thread 1 --num_proc 1 --neg_sample_size_eval 1000 --test-triples-file $COVID_TRIPLES_DIR/wikidata_test_covid_P1050.tsv --model_path $SAVE_DIR --rel-type-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/rel_type_dict.pickle --entity-child-dict-file $WIKIDATA_MAR_20_PROC_JSON_DIR/entity_child_dict.json --sampler-type head

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published