Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: update lc problems #3881

Merged
merged 1 commit into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions solution/0200-0299/0222.Count Complete Tree Nodes/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,9 @@ tags:

<p>给你一棵<strong> 完全二叉树</strong> 的根节点 <code>root</code> ,求出该树的节点个数。</p>

<p><a href="https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E4%BA%8C%E5%8F%89%E6%A0%91/7773232?fr=aladdin">完全二叉树</a> 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 <code>h</code> 层,则该层包含 <code>1~ 2<sup>h</sup></code> 个节点。</p>
<p><a href="https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E4%BA%8C%E5%8F%89%E6%A0%91/7773232?fr=aladdin">完全二叉树</a> 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 <code>h</code> 层(从第 0 层开始),则该层包含 <code>1~&nbsp;2<sup>h</sup></code>&nbsp;个节点。</p>

<p> </p>
<p>&nbsp;</p>

<p><strong>示例 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
Expand All @@ -46,17 +46,17 @@ tags:
<strong>输出:</strong>1
</pre>

<p> </p>
<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li>树中节点的数目范围是<code>[0, 5 * 10<sup>4</sup>]</code></li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li><code>0 &lt;= Node.val &lt;= 5 * 10<sup>4</sup></code></li>
<li>题目数据保证输入的树是 <strong>完全二叉树</strong></li>
</ul>

<p> </p>
<p>&nbsp;</p>

<p><strong>进阶:</strong>遍历树来统计节点是一种时间复杂度为 <code>O(n)</code> 的简单解决方案。你可以设计一个更快的算法吗?</p>

Expand Down
1 change: 1 addition & 0 deletions solution/0300-0399/0321.Create Maximum Number/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ tags:
<li><code>1 &lt;= m, n &lt;= 500</code></li>
<li><code>0 &lt;= nums1[i], nums2[i] &lt;= 9</code></li>
<li><code>1 &lt;= k &lt;= m + n</code></li>
<li><code>nums1</code> and <code>nums2</code> do not have leading zeros.</li>
</ul>

<!-- description:end -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/0600-0699/0634.Fi
tags:
- 数学
- 动态规划
- 组合数学
---

<!-- problem:start -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/0600-0699/0634.Fi
tags:
- Math
- Dynamic Programming
- Combinatorics
---

<!-- problem:start -->
Expand Down
2 changes: 1 addition & 1 deletion solution/0700-0799/0735.Asteroid Collision/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ tags:

<!-- description:start -->

<p>We are given an array <code>asteroids</code> of integers representing asteroids in a row.</p>
<p>We are given an array <code>asteroids</code> of integers representing asteroids in a row. The indices of the asteriod in the array represent their relative position in space.</p>

<p>For each asteroid, the absolute value represents its size, and the sign represents its direction (positive meaning right, negative meaning left). Each asteroid moves at the same speed.</p>

Expand Down
12 changes: 6 additions & 6 deletions solution/0900-0999/0977.Squares of a Sorted Array/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ tags:
<ul>
</ul>

<p> </p>
<p>&nbsp;</p>

<p><strong>示例 1:</strong></p>

Expand All @@ -40,22 +40,22 @@ tags:
<strong>输出:</strong>[4,9,9,49,121]
</pre>

<p> </p>
<p>&nbsp;</p>

<p><strong>提示:</strong></p>

<ul>
<li><code><span>1 <= nums.length <= </span>10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
<li><code><span>1 &lt;= nums.length &lt;= </span>10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> &lt;= nums[i] &lt;= 10<sup>4</sup></code></li>
<li><code>nums</code> 已按 <strong>非递减顺序</strong> 排序</li>
</ul>

<p> </p>
<p>&nbsp;</p>

<p><strong>进阶:</strong></p>

<ul>
<li>请你<span style="color: rgb(36, 41, 46); font-family: -apple-system, BlinkMacSystemFont, &quot;Segoe UI&quot;, Helvetica, Arial, sans-serif, &quot;Apple Color Emoji&quot;, &quot;Segoe UI Emoji&quot;; font-size: 14px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">设计时间复杂度为 <code>O(n)</code> 的算法解决本问题</span></li>
<li>请你设计时间复杂度为 <code>O(n)</code> 的算法解决本问题</li>
</ul>

<!-- description:end -->
Expand Down
2 changes: 1 addition & 1 deletion solution/1800-1899/1891.Cutting Ribbons/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ tags:
<li>切割成四条长度为 <code>1</code>&nbsp;的绳子。</li>
</ul>

<p>你的任务是找出最大 <code>x</code> 值,要求满足可以裁切出恰好 <code>k</code> 条长度均为 <code>x</code> 的绳子。你可以丢弃裁切后剩余的任意长度的绳子。如果不可能切割出&nbsp;<code>k</code> 条相同长度的绳子,返回 0。</p>
<p>你的任务是找出最大 <code>x</code> 值,要求满足可以裁切出至少&nbsp;<code>k</code> 条长度均为 <code>x</code> 的绳子。你可以丢弃裁切后剩余的任意长度的绳子。如果不可能切割出&nbsp;<code>k</code> 条相同长度的绳子,返回 0。</p>

<p>&nbsp;</p>

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ tags:
<ul>
<li>Choose the pile with the maximum number of gifts.</li>
<li>If there is more than one pile with the maximum number of gifts, choose any.</li>
<li>Leave behind the floor of the square root of the number of gifts in the pile. Take the rest of the gifts.</li>
<li>Reduce the number of gifts in the pile to the floor of the square root of the original number of gifts in the pile.</li>
</ul>

<p>Return <em>the number of gifts remaining after </em><code>k</code><em> seconds.</em></p>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,70 +6,72 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3300-3399/3391.De

<!-- problem:start -->

# [3391. Design a 3D Binary Matrix with Efficient Layer Tracking 🔒](https://leetcode.cn/problems/design-a-3d-binary-matrix-with-efficient-layer-tracking)
# [3391. 设计一个高效的层跟踪三维二进制矩阵 🔒](https://leetcode.cn/problems/design-a-3d-binary-matrix-with-efficient-layer-tracking)

[English Version](/solution/3300-3399/3391.Design%20a%203D%20Binary%20Matrix%20with%20Efficient%20Layer%20Tracking/README_EN.md)

## 题目描述

<!-- description:start -->

<p>You are given a <code>n x n x n</code> <strong>binary</strong> 3D array <code>matrix</code>.</p>
<p>给定一个&nbsp;<code>n x n x n</code>&nbsp;的 <strong>二进制&nbsp;</strong>三维数组&nbsp;<code>matrix</code></p>

<p>Implement the <code>matrix3D</code> class:</p>
<p>实现&nbsp;<code>Matrix3D</code>&nbsp;类:</p>

<ul>
<li><code>matrix3D(int n)</code> Initializes the object with the 3D binary array <code>matrix</code>, where <strong>all</strong> elements are initially set to 0.</li>
<li><code>void setCell(int x, int y, int z)</code> Sets the value at <code>matrix[x][y][z]</code> to 1.</li>
<li><code>void unsetCell(int x, int y, int z)</code> Sets the value at <code>matrix[x][y][z]</code> to 0.</li>
<li><code>int largestMatrix()</code> Returns the index <code>x</code> where <code>matrix[x]</code> contains the most number of 1&#39;s. If there are multiple such indices, return the <strong>largest</strong> <code>x</code>.</li>
<li><code>Matrix3D(int n)</code>&nbsp;用三维二进制数组&nbsp;<code>matrix</code>&nbsp;初始化对象,其中 <strong>所有</strong>&nbsp;元素都初始化为 0。</li>
<li><code>void setCell(int x, int y, int z)</code>&nbsp;将 <code>matrix[x][y][z]</code>&nbsp;的值设为 1。</li>
<li><code>void unsetCell(int x, int y, int z)</code>&nbsp;将 <code>matrix[x][y][z]</code>&nbsp;的值设为 0。</li>
<li><code>int largestMatrix()</code>&nbsp;返回包含最多 1 的 <code>matrix[x]</code>&nbsp;的下标&nbsp;<code>x</code>。如果这样的对应值有多个,返回&nbsp;<strong>最大的</strong>&nbsp;<code>x</code></li>
</ul>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>

<p><strong class="example">示例 1:</strong></p>

<div class="example-block">
<p><strong>Input:</strong><br />
<span class="example-io">[&quot;matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;]<br />
<p><strong>输入:</strong><br />
<span class="example-io">["Matrix3D", "setCell", "largestMatrix", "setCell", "largestMatrix", "setCell", "largestMatrix"]<br />
[[3], [0, 0, 0], [], [1, 1, 2], [], [0, 0, 1], []]</span></p>

<p><strong>Output:</strong><br />
<p><strong>输出:</strong><br />
<span class="example-io">[null, null, 0, null, 1, null, 0] </span></p>

<p><strong>Explanation</strong></p>
matrix3D matrix3D = new matrix3D(3); // Initializes a <code>3 x 3 x 3</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
matrix3D.setCell(0, 0, 0); // Sets <code>matrix[0][0][0]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 0. <code>matrix[0]</code> has the most number of 1&#39;s.<br />
matrix3D.setCell(1, 1, 2); // Sets <code>matrix[1][1][2]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 1. <code>matrix[0]</code> and <code>matrix[1]</code> tie with the most number of 1&#39;s, but index 1 is bigger.<br />
matrix3D.setCell(0, 0, 1); // Sets <code>matrix[0][0][1]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 0. <code>matrix[0]</code> has the most number of 1&#39;s.</div>
<p><strong>解释:</strong></p>
Matrix3D matrix3D = new Matrix3D(3); // 初始化一个&nbsp;<code>3 x 3 x 3</code>&nbsp;的三维数组&nbsp;<code>matrix</code>,用全 0 填充。<br />
matrix3D.setCell(0, 0, 0); // 将&nbsp;<code>matrix[0][0][0]</code> 设为 1。<br />
matrix3D.largestMatrix(); // 返回 0。<code>matrix[0]</code>&nbsp;1 的数量最多。<br />
matrix3D.setCell(1, 1, 2); // <code>matrix[1][1][2]</code> 设为 1。<br />
matrix3D.largestMatrix(); // 返回 1。<code>matrix[0]</code> 和&nbsp;<code>matrix[1]</code>&nbsp;1 的数量一样多,但下标 1 更大。<br />
matrix3D.setCell(0, 0, 1); // <code>matrix[0][0][1]</code> 设为 1。<br />
matrix3D.largestMatrix(); // 返回 0。<code>matrix[0]</code>&nbsp;1 的数量最多。</div>

<p><strong class="example">Example 2:</strong></p>
<p><strong class="example">示例 2:</strong></p>

<div class="example-block">
<p><strong>Input:</strong><br />
<span class="example-io">[&quot;matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;unsetCell&quot;, &quot;largestMatrix&quot;]<br />
<p><strong>输入:</strong><br />
<span class="example-io">["Matrix3D", "setCell", "largestMatrix", "unsetCell", "largestMatrix"]<br />
[[4], [2, 1, 1], [], [2, 1, 1], []]</span></p>

<p><strong>Output:</strong><br />
<p><strong>输出:</strong><br />
<span class="example-io">[null, null, 2, null, 3] </span></p>

<p><strong>Explanation</strong></p>
matrix3D matrix3D = new matrix3D(4); // Initializes a <code>4 x 4 x 4</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
matrix3D.setCell(2, 1, 1); // Sets <code>matrix[2][1][1]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 2. <code>matrix[2]</code> has the most number of 1&#39;s.<br />
matrix3D.unsetCell(2, 1, 1); // Sets <code>matrix[2][1][1]</code> to 0.<br />
matrix3D.largestMatrix(); // Returns 3. All indices from 0 to 3 tie with the same number of 1&#39;s, but index 3 is the biggest.</div>
<p><strong>解释:</strong></p>
Matrix3D matrix3D = new matrix3D(4); // 初始化一个&nbsp;<code>4 x 4 x 4</code>&nbsp;的三维数组&nbsp;<code>matrix</code>,用全 0 填充。<br />
matrix3D.setCell(2, 1, 1); // 将&nbsp;<code>matrix[2][1][1]</code> 设为 1。<br />
matrix3D.largestMatrix(); // 返回 2。<code>matrix[2]</code>&nbsp;1 的数量最多。<br />
matrix3D.unsetCell(2, 1, 1); // <code>matrix[2][1][1]</code> 设为 0。<br />
matrix3D.largestMatrix(); // 返回 3。0 到 3 的对应值都有相同数量的 1,但下标 3 最大。</div>

<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>

<p><strong>提示:</strong></p>

<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>0 &lt;= x, y, z &lt; n</code></li>
<li>At most <code>10<sup>5</sup></code> calls are made in total to <code>setCell</code> and <code>unsetCell</code>.</li>
<li>At most <code>10<sup>4</sup></code> calls are made to <code>largestMatrix</code>.</li>
<li>最多总共调用&nbsp;<code>10<sup>5</sup></code>&nbsp;次&nbsp;<code>setCell</code> 和&nbsp;<code>unsetCell</code></li>
<li>最多调用&nbsp;<code>10<sup>4</sup></code> 次&nbsp;<code>largestMatrix</code></li>
</ul>

<!-- description:end -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,10 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3300-3399/3391.De

<p>You are given a <code>n x n x n</code> <strong>binary</strong> 3D array <code>matrix</code>.</p>

<p>Implement the <code>matrix3D</code> class:</p>
<p>Implement the <code>Matrix3D</code> class:</p>

<ul>
<li><code>matrix3D(int n)</code> Initializes the object with the 3D binary array <code>matrix</code>, where <strong>all</strong> elements are initially set to 0.</li>
<li><code>Matrix3D(int n)</code> Initializes the object with the 3D binary array <code>matrix</code>, where <strong>all</strong> elements are initially set to 0.</li>
<li><code>void setCell(int x, int y, int z)</code> Sets the value at <code>matrix[x][y][z]</code> to 1.</li>
<li><code>void unsetCell(int x, int y, int z)</code> Sets the value at <code>matrix[x][y][z]</code> to 0.</li>
<li><code>int largestMatrix()</code> Returns the index <code>x</code> where <code>matrix[x]</code> contains the most number of 1&#39;s. If there are multiple such indices, return the <strong>largest</strong> <code>x</code>.</li>
Expand All @@ -30,14 +30,14 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3300-3399/3391.De

<div class="example-block">
<p><strong>Input:</strong><br />
<span class="example-io">[&quot;matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;]<br />
<span class="example-io">[&quot;Matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;]<br />
[[3], [0, 0, 0], [], [1, 1, 2], [], [0, 0, 1], []]</span></p>

<p><strong>Output:</strong><br />
<span class="example-io">[null, null, 0, null, 1, null, 0] </span></p>

<p><strong>Explanation</strong></p>
matrix3D matrix3D = new matrix3D(3); // Initializes a <code>3 x 3 x 3</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
Matrix3D matrix3D = new Matrix3D(3); // Initializes a <code>3 x 3 x 3</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
matrix3D.setCell(0, 0, 0); // Sets <code>matrix[0][0][0]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 0. <code>matrix[0]</code> has the most number of 1&#39;s.<br />
matrix3D.setCell(1, 1, 2); // Sets <code>matrix[1][1][2]</code> to 1.<br />
Expand All @@ -49,14 +49,14 @@ matrix3D.largestMatrix(); // Returns 0. <code>matrix[0]</code> has the most numb

<div class="example-block">
<p><strong>Input:</strong><br />
<span class="example-io">[&quot;matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;unsetCell&quot;, &quot;largestMatrix&quot;]<br />
<span class="example-io">[&quot;Matrix3D&quot;, &quot;setCell&quot;, &quot;largestMatrix&quot;, &quot;unsetCell&quot;, &quot;largestMatrix&quot;]<br />
[[4], [2, 1, 1], [], [2, 1, 1], []]</span></p>

<p><strong>Output:</strong><br />
<span class="example-io">[null, null, 2, null, 3] </span></p>

<p><strong>Explanation</strong></p>
matrix3D matrix3D = new matrix3D(4); // Initializes a <code>4 x 4 x 4</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
Matrix3D matrix3D = new Matrix3D(4); // Initializes a <code>4 x 4 x 4</code> 3D array <code>matrix</code>, filled with all 0&#39;s.<br />
matrix3D.setCell(2, 1, 1); // Sets <code>matrix[2][1][1]</code> to 1.<br />
matrix3D.largestMatrix(); // Returns 2. <code>matrix[2]</code> has the most number of 1&#39;s.<br />
matrix3D.unsetCell(2, 1, 1); // Sets <code>matrix[2][1][1]</code> to 0.<br />
Expand Down
4 changes: 2 additions & 2 deletions solution/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -644,7 +644,7 @@
| 0631 | [设计 Excel 求和公式](/solution/0600-0699/0631.Design%20Excel%20Sum%20Formula/README.md) | `图`,`设计`,`拓扑排序`,`数组`,`矩阵` | 困难 | 🔒 |
| 0632 | [最小区间](/solution/0600-0699/0632.Smallest%20Range%20Covering%20Elements%20from%20K%20Lists/README.md) | `贪心`,`数组`,`哈希表`,`排序`,`滑动窗口`,`堆(优先队列)` | 困难 | |
| 0633 | [平方数之和](/solution/0600-0699/0633.Sum%20of%20Square%20Numbers/README.md) | `数学`,`双指针`,`二分查找` | 中等 | |
| 0634 | [寻找数组的错位排列](/solution/0600-0699/0634.Find%20the%20Derangement%20of%20An%20Array/README.md) | `数学`,`动态规划` | 中等 | 🔒 |
| 0634 | [寻找数组的错位排列](/solution/0600-0699/0634.Find%20the%20Derangement%20of%20An%20Array/README.md) | `数学`,`动态规划`,`组合数学` | 中等 | 🔒 |
| 0635 | [设计日志存储系统](/solution/0600-0699/0635.Design%20Log%20Storage%20System/README.md) | `设计`,`哈希表`,`字符串`,`有序集合` | 中等 | 🔒 |
| 0636 | [函数的独占时间](/solution/0600-0699/0636.Exclusive%20Time%20of%20Functions/README.md) | `栈`,`数组` | 中等 | |
| 0637 | [二叉树的层平均值](/solution/0600-0699/0637.Average%20of%20Levels%20in%20Binary%20Tree/README.md) | `树`,`深度优先搜索`,`广度优先搜索`,`二叉树` | 简单 | |
Expand Down Expand Up @@ -3401,7 +3401,7 @@
| 3388 | [统计数组中的美丽分割](/solution/3300-3399/3388.Count%20Beautiful%20Splits%20in%20an%20Array/README.md) | `数组`,`动态规划` | 中等 | 第 428 场周赛 |
| 3389 | [使字符频率相等的最少操作次数](/solution/3300-3399/3389.Minimum%20Operations%20to%20Make%20Character%20Frequencies%20Equal/README.md) | `哈希表`,`字符串`,`动态规划`,`计数`,`枚举` | 困难 | 第 428 场周赛 |
| 3390 | [Longest Team Pass Streak](/solution/3300-3399/3390.Longest%20Team%20Pass%20Streak/README.md) | `数据库` | 困难 | 🔒 |
| 3391 | [Design a 3D Binary Matrix with Efficient Layer Tracking](/solution/3300-3399/3391.Design%20a%203D%20Binary%20Matrix%20with%20Efficient%20Layer%20Tracking/README.md) | | 中等 | 🔒 |
| 3391 | [设计一个高效的层跟踪三维二进制矩阵](/solution/3300-3399/3391.Design%20a%203D%20Binary%20Matrix%20with%20Efficient%20Layer%20Tracking/README.md) | | 中等 | 🔒 |
| 3392 | [统计符合条件长度为 3 的子数组数目](/solution/3300-3399/3392.Count%20Subarrays%20of%20Length%20Three%20With%20a%20Condition/README.md) | | 简单 | 第 146 场双周赛 |
| 3393 | [统计异或值为给定值的路径数目](/solution/3300-3399/3393.Count%20Paths%20With%20the%20Given%20XOR%20Value/README.md) | | 中等 | 第 146 场双周赛 |
| 3394 | [判断网格图能否被切割成块](/solution/3300-3399/3394.Check%20if%20Grid%20can%20be%20Cut%20into%20Sections/README.md) | | 中等 | 第 146 场双周赛 |
Expand Down
Loading
Loading