Skip to content

Latest commit

 

History

History
43 lines (20 loc) · 1.35 KB

README.md

File metadata and controls

43 lines (20 loc) · 1.35 KB

Deep Counterfactual Estimation with Categorical Background Variables

Requirements

We use poetry as a package manager, which should take care of all dependencies. You can install poetry here

The only requirement is python>=3.9 and python<3.11.

Installation

Simply run poetry install

Data Generation

The data will be generated automatically when running the models.

Running Experiments

cd condgen/counterfactuals

Image Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=MNIST --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Harmonic Oscillator Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=SimpleTraj --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Harmonic Oscillator Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=CV --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Processing Results

The CF_eval.ipynb notebook is used to process the results of the counterfactual reconstructions experiments.

MNIST_comparison.ipynb produces the image comparison figure.