Skip to content

Deep Counterfactual Prediction with Categorical Backward Variables

License

Notifications You must be signed in to change notification settings

edebrouwer/cfqp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Counterfactual Estimation with Categorical Background Variables

Requirements

We use poetry as a package manager, which should take care of all dependencies. You can install poetry here

The only requirement is python>=3.9 and python<3.11.

Installation

Simply run poetry install

Data Generation

The data will be generated automatically when running the models.

Running Experiments

cd condgen/counterfactuals

Image Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=MNIST --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Harmonic Oscillator Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=SimpleTraj --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Harmonic Oscillator Data Set

poetry run python train_cf_cluster.py --EM=true --data_type=CV --max_epochs1=50 --max_epochs2=50 --noise_std=0.05 -non_additive_noise=True -num_classes_model=-1 --update_period=10

Processing Results

The CF_eval.ipynb notebook is used to process the results of the counterfactual reconstructions experiments.

MNIST_comparison.ipynb produces the image comparison figure.

About

Deep Counterfactual Prediction with Categorical Backward Variables

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published