Skip to content

efyphil/camp

Repository files navigation

Superresolution using an efficient sub-pixel convolutional neural network

This example illustrates how to use the efficient sub-pixel convolution layer described in "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network" - Shi et al. for increasing spatial resolution within your network for tasks such as superresolution.

usage: main.py [-h] --upscale_factor UPSCALE_FACTOR [--batchSize BATCHSIZE]
               [--testBatchSize TESTBATCHSIZE] [--nEpochs NEPOCHS] [--lr LR]
               [--cuda] [--threads THREADS] [--seed SEED]

This example trains a super-resolution network on the BSD300 dataset, dataset also increse by "crop" function. A snapshot of the model after every epoch with filename model_epoch_<epoch_number>.pth

Example Usage:

Train

python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 30 --lr 0.001

Check

For check you can use server.py which also request flask

About

Super resolution for samsung AI camp

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published