Skip to content

Commit

Permalink
test figure size
Browse files Browse the repository at this point in the history
  • Loading branch information
caalo committed Sep 10, 2024
1 parent 68e175e commit 0eb4bfb
Showing 1 changed file with 20 additions and 17 deletions.
37 changes: 20 additions & 17 deletions 05-data-visualization.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -55,41 +55,39 @@ expression = pd.read_csv("classroom_data/expression.csv")

To create a histogram, we use the function [`sns.displot()`](https://seaborn.pydata.org/generated/seaborn.displot.html) and we specify the input argument `data` as our dataframe, and the input argument `x` as the column name in a String.

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Age")
```

(The `plt.figure()` and `plt.show()` functions are used to render the plots on the website, but you don't need to use it for your exercises.)

A common parameter to consider when making histogram is how big the bins are. You can specify the bin width via `binwidth` argument, or the number of bins via `bins` argument.

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Age", binwidth = 10)
```

Our histogram also works for categorical variables, such as "Sex".

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Sex")
```

**Conditioning on other variables**

Sometimes, you want to examine a distribution, such as Age, conditional on other variables, such as Age for Female, Age for Male, and Age for Unknown: what is the distribution of age when compared with sex? There are several ways of doing it. First, you could color variables by color, using the `hue` input argument:

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Age", hue="Sex")
```

It is rather hard to tell the groups apart from the coloring. So, we add a new option that we want to separate each bar category via `multiple="dodge"` input argument:

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Age", hue="Sex", multiple="dodge")
```

Lastly, an alternative to using colors to display the conditional variable, we could make a subplot for each conditional variable's value via `col="Sex"` or `row="Sex"`:

```{python, out.width="200%"}
```{python}
sns.displot(data=metadata, x="Age", col="Sex")
```

Expand All @@ -99,7 +97,7 @@ You can find a lot more details about distributions and histograms in [the Seabo

To visualize two continuous variables, it is common to use a scatterplot or a lineplot. We use the function [`sns.relplot()`](https://seaborn.pydata.org/generated/seaborn.relplot.html) and we specify the input argument `data` as our dataframe, and the input arguments `x` and `y` as the column names in a String:

```{python, out.width="200%"}
```{python}
sns.relplot(data=expression, x="KRAS_Exp", y="EGFR_Exp")
```

Expand All @@ -113,27 +111,27 @@ To conditional on other variables, plotting features are used to distinguish con

Let's merge `expression` and `metadata` together, so that we can examine KRAS and EGFR relationships conditional on primary vs. metastatic cancer status. Here is the scatterplot with different color:

```{python, out.width="200%"}
```{python}
expression_metadata = expression.merge(metadata)
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", hue="PrimaryOrMetastasis")
```

Here is the scatterplot with different shapes:

```{python, out.width="200%"}
```{python}
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", style="PrimaryOrMetastasis")
```

You can also try plotting with `size=PrimaryOrMetastasis"` if you like. None of these seem pretty effective at distinguishing the two groups, so we will try subplot faceting as we did for the histogram:

```{python, out.width="200%"}
```{python}
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", col="PrimaryOrMetastasis")
```

You can also conditional on multiple variables by assigning a different variable to the conditioning options:

```{python, out.width="200%"}
```{python}
sns.relplot(data=expression_metadata, x="KRAS_Exp", y="EGFR_Exp", hue="PrimaryOrMetastasis", col="AgeCategory")
```

Expand Down Expand Up @@ -168,21 +166,26 @@ See categorical plots [in the Seaborn tutorial.](https://seaborn.pydata.org/tuto
You can easily change the axis labels and title if you modify the plot object, using the method `.set()`:

```{python}
plt.figure()
exp_plot = sns.relplot(data=expression, x="KRAS_Exp", y="EGFR_Exp")
exp_plot.set(xlabel="KRAS Espression", ylabel="EGFR Expression", title="Gene expression relationship")
plt.show()
```

You can change the color palette by setting adding the `palette` input argument to any of the plots. You can explore available color palettes [here](https://www.practicalpythonfordatascience.com/ap_seaborn_palette):

```{python}
plt.figure()
sns.displot(data=metadata, x="Age", hue="Sex", multiple="dodge", palette=sns.color_palette(palette='rainbow')
)
plt.show()
```

## Exercises

Exercise for week 5 can be found [here](https://colab.research.google.com/drive/1kT3zzq2rrhL1vHl01IdW5L1V7v0iK0wY?usp=sharing).

```{r}
hist(iris$Sepal.Length)
```

```{r, out.width="200%"}
hist(iris$Sepal.Length)
```

0 comments on commit 0eb4bfb

Please sign in to comment.