-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
207 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
#! /usr/bin/env python3 | ||
|
||
import json | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import typer | ||
from ase.io import read | ||
from matplotlib import pyplot as plt | ||
from matplotlib.colors import LogNorm, Normalize | ||
from rich import panel | ||
from rich import print as echo | ||
import collections | ||
from scipy import signal as sl | ||
import xarray as xr | ||
|
||
from tdeptools.physics import n_BE | ||
from tdeptools.konstanter import lo_frequency_THz_to_icm | ||
from tdeptools.dos import ( | ||
get_bose_weighted_DOS, | ||
get_weighted_2w_DOS, | ||
get_convoluted_DOS, | ||
get_convoluted_weighted_DOS, | ||
) | ||
|
||
|
||
app = typer.Typer(pretty_exceptions_show_locals=False) | ||
|
||
|
||
def _infile(*args): | ||
"""Input file option, must exist""" | ||
return typer.Option(*args, exists=True) | ||
|
||
|
||
def jls_extract_def(df, toicm, temperature, outfile_plot): | ||
if toicm: | ||
_df = df.set_index("frequency_cm") | ||
else: | ||
_df = df.set_index("frequency") | ||
|
||
fig, axs = plt.subplots(nrows=3, sharex=True) | ||
|
||
ax = axs[0] | ||
ax.plot(_df.index, _df["2PDOS"], label="2PDOS", zorder=5) | ||
ax.plot(_df.index, _df["2PDOS_1"], label="2PDOS +/+") | ||
ax.plot(_df.index, _df["2PDOS_2"], label="2PDOS +/-") | ||
|
||
ax = axs[1] | ||
ax.plot(_df.index, _df["2wDOS"], label="2w-DOS", zorder=5) | ||
ax.plot(_df.index, _df["2wDOS_1"], label="2w-DOS +/+") | ||
ax.plot(_df.index, _df["2wDOS_2"], label="2w-DOS -/-") | ||
|
||
ax = axs[2] | ||
ax.plot(_df.index, _df["DOS_convolution"], label="DOS conv.", zorder=5) | ||
ax.plot(_df.index, _df["DOS_convolution_1"], label="DOS conv. +/+", zorder=5) | ||
ax.plot(_df.index, _df["DOS_convolution_2"], label="DOS conv. +/-", zorder=5) | ||
|
||
for ax in axs: | ||
ax.legend(loc=2, frameon=False) | ||
|
||
ax.set_xlabel("Frequency (cm$^{-1}$)" if toicm else "Frequency (THz)") | ||
|
||
axs[0].set_title(f"Temperature: {temperature} K") | ||
|
||
echo(f'... save plot to "{outfile_plot}"') | ||
fig.savefig(outfile_plot) | ||
|
||
return fig, axs | ||
|
||
|
||
def delta(x, x0, eta=1e-1): | ||
return 1 / np.pi * eta / ((x - x0) ** 2 + eta**2) | ||
|
||
|
||
def compute_spectral_function_convolution( | ||
frequencies, weights, n_frequencies=1024, temperature=300, eta=None | ||
): | ||
fs = abs(np.asarray(frequencies)) | ||
ws = np.asarray(weights) | ||
ns = n_BE(fs, temperature=temperature) | ||
Nq, Ns = fs.shape | ||
|
||
Nw = n_frequencies | ||
|
||
_w = np.linspace(-2 * fs.max(), 2 * fs.max(), Nw) | ||
dw = (_w[1] - _w[0]) / 2 | ||
|
||
Jp_qs = np.zeros((Nw, Nq, Ns)) | ||
Jm_qs = np.zeros((Nw, Nq, Ns)) | ||
|
||
if eta is None: | ||
eta = 2 * dw | ||
|
||
for i, w in enumerate(_w): | ||
Jp_qs[i] = ws[:, None] * (ns + 1) * delta(w, +fs, eta=eta) | ||
Jm_qs[i] = ws[:, None] * ns * delta(w, -fs, eta=eta) | ||
|
||
# option 1: sum over q and s first | ||
fp = Jp_qs.sum(axis=(1, 2)) | ||
fm = Jm_qs.sum(axis=(1, 2)) | ||
|
||
fpp = sl.convolve(fp, fp, "same") / Nw | ||
fpm = sl.convolve(fp, fm, "same") / Nw | ||
fmp = sl.convolve(fm, fp, "same") / Nw | ||
fmm = sl.convolve(fm, fm, "same") / Nw | ||
fmm = sl.convolve(fm, fm, "same") / Nw | ||
|
||
J1 = fpp + fmm | ||
J2 = fpm + fmp | ||
|
||
# option 2: sum only over s first | ||
fp_q = Jp_qs.sum(axis=2) | ||
fm_q = Jm_qs.sum(axis=2) | ||
|
||
fpp_q = np.zeros_like(fp_q) | ||
fpm_q = np.zeros_like(fp_q) | ||
fmp_q = np.zeros_like(fp_q) | ||
fmm_q = np.zeros_like(fp_q) | ||
|
||
for iq in range(Nq): | ||
fpp_q[:, iq] = sl.convolve(fp_q[:, iq], fp_q[:, iq], mode="same") / Nw | ||
fpm_q[:, iq] = sl.convolve(fp_q[:, iq], fm_q[:, iq], mode="same") / Nw | ||
fmp_q[:, iq] = sl.convolve(fm_q[:, iq], fp_q[:, iq], mode="same") / Nw | ||
fmm_q[:, iq] = sl.convolve(fm_q[:, iq], fm_q[:, iq], mode="same") / Nw | ||
|
||
fpp = Nq * fpp_q.sum(axis=1) | ||
fpm = Nq * fpm_q.sum(axis=1) | ||
fmp = Nq * fmp_q.sum(axis=1) | ||
fmm = Nq * fmm_q.sum(axis=1) | ||
|
||
J1q = fpp + fmm | ||
J2q = fpm + fmp | ||
|
||
# option 3: weighted 2w-DOS | ||
Jp_qs = np.zeros((Nw, Nq, Ns)) | ||
Jm_qs = np.zeros((Nw, Nq, Ns)) | ||
|
||
for i, w in enumerate(_w): | ||
Jp_qs[i] = ws[:, None] * (ns + 1) ** 2 * delta(w, +2 * fs, eta=4 * eta) | ||
Jm_qs[i] = ws[:, None] * ns**2 * delta(w, -2 * fs, eta=4 * eta) | ||
|
||
# option 1: sum over q and s first | ||
J1s = Jp_qs.sum(axis=(1, 2)) | ||
J2s = Jm_qs.sum(axis=(1, 2)) | ||
|
||
return collections.namedtuple( | ||
"jdos", ["frequencies", "f1", "f2", "f1q", "f2q", "f1s", "f2s"] | ||
)(_w, J1, J2, J1q, J2q, J1s, J2s) | ||
|
||
|
||
@app.command() | ||
def main( | ||
ctx: typer.Context, | ||
file_dispersion: Path = _infile("outfile.grid_dispersions_irreducible.hdf5"), | ||
temperature: float = typer.Option(300, help="Temperature in K"), | ||
eta: float = None, | ||
plot: bool = typer.Option(True, help="Plot the DOS convolutions"), | ||
toicm: bool = True, | ||
outfile_data: Path = "outfile.2pdos.csv", | ||
outfile_plot: Path = "outfile.2pdos.pdf", | ||
): | ||
"""Calculate DOS convolutions for Raman intensities""" | ||
echo(f"Read '{file_dispersion}'") | ||
|
||
echo("Settings:") | ||
echo(ctx.params) | ||
|
||
ds = xr.load_dataset(file_dispersion) | ||
|
||
# frequencies from 1/s to THz | ||
fs = ds.frequencies.data / 1e12 / 2 / np.pi | ||
ws = ds.integration_weights.data | ||
|
||
# get different contributions to spectral function convolution | ||
_w, J1, J2, J1q, J2q, J1s, J2s = compute_spectral_function_convolution( | ||
fs, ws, n_frequencies=1024, temperature=temperature, eta=eta | ||
) | ||
|
||
# create dataframe | ||
data = { | ||
"frequency": _w, | ||
"frequency_cm": _w * lo_frequency_THz_to_icm, | ||
"2PDOS": J1q + J2q, | ||
"2PDOS_1": J1q, | ||
"2PDOS_2": J2q, | ||
"2wDOS": J1s + J2s, | ||
"2wDOS_1": J1s, | ||
"2wDOS_2": J2s, | ||
"DOS_convolution": J1 + J2, | ||
"DOS_convolution_1": J1, | ||
"DOS_convolution_2": J2, | ||
} | ||
df = pd.DataFrame(data) | ||
|
||
echo(f'... save data to "{outfile_data}"') | ||
df.to_csv(outfile_data, index=False) | ||
|
||
if plot: | ||
fig, axs = jls_extract_def( | ||
df, toicm=toicm, temperature=temperature, outfile_plot=outfile_plot | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
app() |