Skip to content
/ bgnn Public
forked from zhuhm1996/bgnn

bilinear graph neural network

Notifications You must be signed in to change notification settings

fulifeng/bgnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 

Repository files navigation

BGNN

This is the TensorFlow implementation of our paper accepted by IJCAI 2020:

Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang, Bilinear Graph Neural Network with Neighbor Interactions. Paper in arXiv.

Introduction

We propose a new graph convolution operator, augmenting the weighted sum with pairwise interactions of the representations of neighbor nodes. We specify two BGNN models named BGCN and BGAT, based on the well-known GCN and GAT, respectively.

Dependencies

The code is tested by server with RTX 1080Ti running in a docker container which includes the following packages:

  • python == 3.6.3
  • tensorflow == 1.4.0
  • numpy == 1.13.3
  • scipy == 1.0.0
  • networkx == 2.0

In addition, CUDA 8 and cuDNN 6 have been used.

Simulation example

Here are the instruction commands for running the codes on Citeseer in a docker container.

1-layer BGCN-A

  • Command
cd BGCN/1-layer/BGCN-A/
python gcn.py --model bgcn --dropout 0.0 --weight_decay 5e-4 --alpha 0.9 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79177 train_acc= 0.1250 val_loss= 1.79168 val_acc= 0.2840 tst_loss= 1.79169 tst_acc= 0.2600 time= 0.112
Epoch: 0002 train_loss= 1.79154 train_acc= 0.5250 val_loss= 1.79162 val_acc= 0.3820 tst_loss= 1.79162 tst_acc= 0.3660 time= 0.055
...
Epoch: 1999 train_loss= 1.52770 train_acc= 0.8333 val_loss= 1.67561 val_acc= 0.6460 tst_loss= 1.67752 tst_acc= 0.6940 time= 0.049
Epoch: 2000 train_loss= 1.52768 train_acc= 0.8333 val_loss= 1.67560 val_acc= 0.6460 tst_loss= 1.67750 tst_acc= 0.6940 time= 0.048
test_loss= 1.69706 test_acc= 0.7010
early stop #epoch 1004 val_loss= 1.69771 val_acc= 0.6820

1-layer BGCN-T

  • Command
cd BGCN/1-layer/BGCN-T/
python gcn.py --model bgcn --dropout 0.0 --weight_decay 5e-4 --alpha 0.7 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79160 train_acc= 0.2083 val_loss= 1.79143 val_acc= 0.2900 tst_loss= 1.79137 tst_acc= 0.2910 time= 0.150
Epoch: 0002 train_loss= 1.79057 train_acc= 0.6333 val_loss= 1.79115 val_acc= 0.3380 tst_loss= 1.79107 tst_acc= 0.3910 time= 0.071
...
Epoch: 1999 train_loss= 1.57680 train_acc= 0.8583 val_loss= 1.69943 val_acc= 0.6600 tst_loss= 1.69793 tst_acc= 0.6930 time= 0.058
Epoch: 2000 train_loss= 1.57679 train_acc= 0.8583 val_loss= 1.69942 val_acc= 0.6600 tst_loss= 1.69792 tst_acc= 0.6930 time= 0.064
test_loss= 1.71482 test_acc= 0.7080
early stop #epoch 893 val_loss= 1.71812 val_acc= 0.6860

1-layer BGAT-A

  • Command
cd BGAT/1-layer/BGAT-A/
python gat.py --head 1 --feadrop 0.0 --attdrop 0.6 --weight_decay 5e-4 --alpha 0.9 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79173 train_acc= 0.1583 val_loss= 1.79085 val_acc= 0.3160 tst_loss= 1.79142 tst_acc= 0.2620 time= 3.564
Epoch: 0002 train_loss= 1.79165 train_acc= 0.1833 val_loss= 1.79147 val_acc= 0.3700 tst_loss= 1.79160 tst_acc= 0.3200 time= 0.227
...
Epoch: 1312 train_loss= 1.74598 train_acc= 0.4583 val_loss= 1.76272 val_acc= 0.6640 tst_loss= 1.76328 tst_acc= 0.6950 time= 0.222
Epoch: 1313 train_loss= 1.73696 train_acc= 0.4417 val_loss= 1.76269 val_acc= 0.6680 tst_loss= 1.76322 tst_acc= 0.6950 time= 0.230
Early stop!
test_loss= 1.77900 test_acc= 0.7180
early stop #epoch 297 val_loss= 1.77891 val_acc= 0.7200

1-layer BGAT-T

  • Command
cd BGAT/1-layer/BGAT-T/
python gat.py --head 1 --feadrop 0.4 --attdrop 0.6 --weight_decay 5e-4 --alpha 0.9 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79172 train_acc= 0.2333 val_loss= 1.79192 val_acc= 0.1700 tst_loss= 1.79161 tst_acc= 0.1990 time= 3.325
Epoch: 0002 train_loss= 1.79166 train_acc= 0.1667 val_loss= 1.79168 val_acc= 0.1980 tst_loss= 1.79161 tst_acc= 0.2360 time= 0.222
...
Epoch: 1058 train_loss= 1.75115 train_acc= 0.4333 val_loss= 1.76869 val_acc= 0.6780 tst_loss= 1.76848 tst_acc= 0.6680 time= 0.281
Epoch: 1059 train_loss= 1.74892 train_acc= 0.4000 val_loss= 1.76859 val_acc= 0.6820 tst_loss= 1.76831 tst_acc= 0.6790 time= 0.280
Early stop!
test_loss= 1.77275 test_acc= 0.7300
early stop #epoch 582 val_loss= 1.77321 val_acc= 0.7120

2-layer BGCN-A

  • Command
cd BGCN/2-layer/BGCN-A/
python gcn.py --model bgcn --dropout 0.6 --weight_decay 1e-4 --alpha 0.3 --beta 0.7 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79182 train_acc= 0.1333 val_loss= 1.79101 val_acc= 0.3180 tst_loss= 1.79108 tst_acc= 0.2940 time= 0.139
Epoch: 0002 train_loss= 1.79003 train_acc= 0.4000 val_loss= 1.79026 val_acc= 0.4460 tst_loss= 1.79031 tst_acc= 0.4400 time= 0.067
...
Epoch: 1999 train_loss= 0.96810 train_acc= 0.9417 val_loss= 1.36601 val_acc= 0.7200 tst_loss= 1.35519 tst_acc= 0.7130 time= 0.056
Epoch: 2000 train_loss= 0.94014 train_acc= 0.9167 val_loss= 1.36595 val_acc= 0.7200 tst_loss= 1.35513 tst_acc= 0.7130 time= 0.049
test_loss= 1.37182 test_acc= 0.7140
early stop #epoch 1727 val_loss= 1.38217 val_acc= 0.7240

2-layer BGCN-T

  • Command
cd BGCN/2-layer/BGCN-T/
python gcn.py --model bgcn --dropout 0.0 --weight_decay 1e-4 --alpha 0.3 --beta 0.7 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79181 train_acc= 0.1083 val_loss= 1.79105 val_acc= 0.3120 tst_loss= 1.79096 tst_acc= 0.3390 time= 0.383
Epoch: 0002 train_loss= 1.78918 train_acc= 0.6583 val_loss= 1.79016 val_acc= 0.4720 tst_loss= 1.79004 tst_acc= 0.4620 time= 0.086
...
Epoch: 1999 train_loss= 0.78423 train_acc= 0.9833 val_loss= 1.33716 val_acc= 0.7300 tst_loss= 1.31960 tst_acc= 0.7190 time= 0.059
Epoch: 2000 train_loss= 0.78418 train_acc= 0.9833 val_loss= 1.33711 val_acc= 0.7300 tst_loss= 1.31955 tst_acc= 0.7190 time= 0.062
test_loss= 1.31955 test_acc= 0.7190
early stop #epoch 2000 val_loss= 1.33711 val_acc= 0.7300

2-layer BGAT-A

  • Command
cd BGAT/2-layer/BGAT-A/
python gat.py --head 1 --hidden1 8 --feadrop 0.6 --attdrop 0.6 --weight_decay 5e-4 --alpha 0.7 --beta 0.3 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79191 train_acc= 0.1750 val_loss= 1.79127 val_acc= 0.2160 tst_loss= 1.79155 tst_acc= 0.2240 time= 5.875
Epoch: 0002 train_loss= 1.79350 train_acc= 0.1750 val_loss= 1.79081 val_acc= 0.3400 tst_loss= 1.79107 tst_acc= 0.3310 time= 0.480
...
Epoch: 1116 train_loss= 1.41075 train_acc= 0.4417 val_loss= 1.47168 val_acc= 0.7160 tst_loss= 1.47457 tst_acc= 0.7180 time= 0.492
Epoch: 1117 train_loss= 1.45948 train_acc= 0.4250 val_loss= 1.47192 val_acc= 0.7140 tst_loss= 1.47484 tst_acc= 0.7210 time= 0.462
Early stop!
test_loss= 1.46169 test_acc= 0.7410
early stop #epoch 1016 val_loss= 1.46063 val_acc= 0.7440

2-layer BGAT-T

  • Command
cd BGAT/2-layer/BGAT-T/
python gat.py --head 1 --hidden1 8 --feadrop 0.6 --attdrop 0.6 --weight_decay 1e-3 --alpha 0.5 --beta 0.5 --epochs 2000 --learning_rate 0.005
  • Output
Epoch: 0001 train_loss= 1.79209 train_acc= 0.1833 val_loss= 1.79096 val_acc= 0.2120 tst_loss= 1.79143 tst_acc= 0.2230 time= 5.741
Epoch: 0002 train_loss= 1.79474 train_acc= 0.1750 val_loss= 1.79024 val_acc= 0.3400 tst_loss= 1.79066 tst_acc= 0.3380 time= 0.457
...
Epoch: 0902 train_loss= 1.44180 train_acc= 0.4667 val_loss= 1.51039 val_acc= 0.7220 tst_loss= 1.50913 tst_acc= 0.7260 time= 0.465
Epoch: 0903 train_loss= 1.48058 train_acc= 0.4167 val_loss= 1.51134 val_acc= 0.7220 tst_loss= 1.50986 tst_acc= 0.7290 time= 0.452
Early stop!
test_loss= 1.54286 test_acc= 0.7400
early stop #epoch 492 val_loss= 1.54243 val_acc= 0.7440

Besides, we provide another possible interaction scope which only considers the interactions between neighbors in graphs (see BGCN-N and BGAT-N).

Dataset

We utilize three benchmark datasets of citation network---Pubmed, Cora and Citeseer.

About

bilinear graph neural network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%