-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
37 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import talib | ||
|
||
def SchaffTrendCycle(dataframe, SchaffPeriod=10, FastEma=20, SlowEma=50, SmoothPeriod=3): | ||
df = dataframe.copy() | ||
|
||
# Calculate MACD | ||
df['ema_fast'] = talib.EMA(df['close'], timeperiod=FastEma) | ||
df['ema_slow'] = talib.EMA(df['close'], timeperiod=SlowEma) | ||
df['macd'] = df['ema_fast'] - df['ema_slow'] | ||
|
||
# Calculate Fast Stochastic | ||
df['low_macd'] = df['macd'].rolling(window=SchaffPeriod).min() | ||
df['high_macd'] = (df['macd'].rolling(window=SchaffPeriod).max() - df['low_macd']) | ||
|
||
df['fastk1'] = np.where(df['high_macd'] > 0, 100 * ((df['macd'] - df['low_macd']) / df['high_macd']), 0) | ||
|
||
# Calculate Fast Stochastic D | ||
df['fastd1'] = df['fastk1'].rolling(window=3).mean() | ||
|
||
# Calculate Second Fast Stochastic | ||
df['low_stoch'] = df['fastd1'].rolling(window=SchaffPeriod).min() | ||
df['high_stoch'] = (df['fastd1'].rolling(window=SchaffPeriod).max() - df['low_stoch']) | ||
|
||
df['fastk2'] = np.where(df['high_stoch'] > 0, 100 * ((df['fastd1'] - df['low_stoch']) / df['high_stoch']), 0) | ||
|
||
# Calculate Schaff Trend Cycle | ||
df['val'] = df['fastk2'].ewm(alpha=0.5).mean() | ||
df['valc'] = np.where(df['val'].diff() > 0, 1, np.where(df['val'].diff() < 0, 2, 0)) | ||
|
||
return df['val'] | ||
|
||
# Example usage: | ||
# Replace df with your pandas DataFrame containing columns ['open', 'high', 'low', 'close'] | ||
# Call the function with your desired parameters | ||
# Example: schaff_trend_cycle_values = SchaffTrendCycle(df, SchaffPeriod=10, FastEma=20, SlowEma=50, SmoothPeriod=3) |