Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gh-440: remove scipy as a test dependency #462

Merged
merged 1 commit into from
Nov 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions .github/test-constraints.txt
Original file line number Diff line number Diff line change
@@ -1,9 +1,6 @@
numpy
--only-binary numpy

scipy
--only-binary scipy

healpy
--only-binary healpy

Expand Down
1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,6 @@ test = [
"pytest-doctestplus",
"pytest-mock",
"pytest-rerunfailures",
"scipy",
]

[project.urls]
Expand Down
38 changes: 19 additions & 19 deletions tests/core/test_algorithm.py
Original file line number Diff line number Diff line change
@@ -1,33 +1,33 @@
import importlib.util

import numpy as np
import pytest

from glass.core.algorithm import nnls as nnls_glass

# check if scipy is available for testing
HAVE_SCIPY = importlib.util.find_spec("scipy") is not None
from glass.core.algorithm import nnls


@pytest.mark.skipif(not HAVE_SCIPY, reason="test requires SciPy")
def test_nnls(rng: np.random.Generator) -> None:
from scipy.optimize import nnls as nnls_scipy

# cross-check output with scipy's nnls
# check output

a = rng.standard_normal((100, 20))
b = rng.standard_normal((100,))
a = np.arange(25.0).reshape(-1, 5)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

b = np.arange(5.0)
y = a @ b
res = nnls(a, y)
assert np.linalg.norm((a @ res) - y) < 1e-7

x_glass = nnls_glass(a, b)
x_scipy, _ = nnls_scipy(a, b)

np.testing.assert_allclose(x_glass, x_scipy)
a = rng.uniform(low=-10, high=10, size=[50, 10])
b = np.abs(rng.uniform(low=-2, high=2, size=[10]))
b[::2] = 0
x = a @ b
res = nnls(a, x, tol=500 * np.linalg.norm(a, 1) * np.spacing(1.0))
np.testing.assert_allclose(res, b, rtol=0.0, atol=1e-10)

# check matrix and vector's shape

a = rng.standard_normal((100, 20))
b = rng.standard_normal((100,))

with pytest.raises(ValueError, match="input `a` is not a matrix"):
nnls_glass(b, a)
nnls(b, a)
with pytest.raises(ValueError, match="input `b` is not a vector"):
nnls_glass(a, a)
nnls(a, a)
with pytest.raises(ValueError, match="the shapes of `a` and `b` do not match"):
nnls_glass(a.T, b)
nnls(a.T, b)
44 changes: 18 additions & 26 deletions tests/core/test_array.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import importlib.util

import numpy as np
import numpy.typing as npt
import pytest
Expand All @@ -12,9 +10,6 @@
trapezoid_product,
)

# check if scipy is available for testing
HAVE_SCIPY = importlib.util.find_spec("scipy") is not None


def test_broadcast_first() -> None:
a = np.ones((2, 3, 4))
Expand Down Expand Up @@ -156,50 +151,47 @@ def test_trapezoid_product() -> None:
np.testing.assert_allclose(s, 1.0)


@pytest.mark.skipif(not HAVE_SCIPY, reason="test requires SciPy")
def test_cumulative_trapezoid() -> None:
import scipy.integrate as spi

# 1D f and x
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.


f = np.array([1, 2, 3, 4])
x = np.array([0, 1, 2, 3])

# default dtype (int - not supported by scipy)
# default dtype (int)

glass_ct = cumulative_trapezoid(f, x)
np.testing.assert_allclose(glass_ct, np.array([0, 1, 4, 7]))
ct = cumulative_trapezoid(f, x)
np.testing.assert_allclose(ct, np.array([0, 1, 4, 7]))

# explicit dtype (float)

glass_ct = cumulative_trapezoid(f, x, dtype=float)
scipy_ct = spi.cumulative_trapezoid(f, x, initial=0)
np.testing.assert_allclose(glass_ct, scipy_ct)
ct = cumulative_trapezoid(f, x, dtype=float)
np.testing.assert_allclose(ct, np.array([0.0, 1.5, 4.0, 7.5]))

# explicit return array

result = cumulative_trapezoid(f, x, dtype=float, out=np.zeros((4,)))
scipy_ct = spi.cumulative_trapezoid(f, x, initial=0)
np.testing.assert_allclose(result, scipy_ct)
out = np.zeros((4,))
ct = cumulative_trapezoid(f, x, dtype=float, out=out)
np.testing.assert_equal(ct, out)

# 2D f and 1D x

f = np.array([[1, 4, 9, 16], [2, 3, 5, 7]])
x = np.array([0, 1, 2.5, 4])

# default dtype (int - not supported by scipy)
# default dtype (int)

glass_ct = cumulative_trapezoid(f, x)
np.testing.assert_allclose(glass_ct, np.array([[0, 2, 12, 31], [0, 2, 8, 17]]))
ct = cumulative_trapezoid(f, x)
np.testing.assert_allclose(ct, np.array([[0, 2, 12, 31], [0, 2, 8, 17]]))

# explicit dtype (float)

glass_ct = cumulative_trapezoid(f, x, dtype=float)
scipy_ct = spi.cumulative_trapezoid(f, x, initial=0)
np.testing.assert_allclose(glass_ct, scipy_ct)
ct = cumulative_trapezoid(f, x, dtype=float)
np.testing.assert_allclose(
ct, np.array([[0.0, 2.5, 12.25, 31.0], [0.0, 2.5, 8.5, 17.5]])
)

# explicit return array

glass_ct = cumulative_trapezoid(f, x, dtype=float, out=np.zeros((2, 4)))
scipy_ct = spi.cumulative_trapezoid(f, x, initial=0)
np.testing.assert_allclose(glass_ct, scipy_ct)
out = np.zeros((2, 4))
ct = cumulative_trapezoid(f, x, dtype=float, out=out)
np.testing.assert_equal(ct, out)