Skip to content

Commit

Permalink
Resolve
Browse files Browse the repository at this point in the history
  • Loading branch information
pseudotensor committed Nov 6, 2024
2 parents 5c767ef + 711ddb3 commit 45226a1
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 4 deletions.
4 changes: 1 addition & 3 deletions openai_server/agent_prompting.py
Original file line number Diff line number Diff line change
Expand Up @@ -724,16 +724,14 @@ def get_wolfram_alpha_helper():
def get_dai_helper():
cwd = os.path.abspath(os.getcwd())
if os.getenv('ENABLE_DAI'):
# https://wolframalpha.readthedocs.io/en/latest/?badge=latest
# https://products.wolframalpha.com/api/documentation
dai = f"""\n* DriverlessAI is an advanced AutoML tool for data science model making and predictions.
* If user specifically asks for a DAI model, then you should use the existing pre-built python code to query DriverlessAI, E.g.:
```sh
# filename: my_dai_query.sh
# execution: true
python {cwd}/openai_server/agent_tools/driverless_ai_data_science.py
```
* usage: python {cwd}/openai_server/agent_tools/wolfram_alpha_math_science_query.py [--experiment_key EXPERIMENT_KEY] [--dataset_key DATASET_KEY] [--data-url DATA_URL] [--dataset-name DATASET_NAME] [--data-source DATA_SOURCE] [--target-column TARGET_COLUMN] [--task {{classification,regression,predict,shapley_original_features,shapley_transformed_features,transform,fit_and_transform,artifacts}}] [--scorer SCORER] [--experiment-name EXPERIMENT_NAME] [--accuracy {{1,2,3,4,5,6,7,8,9,10}}] [--time {{1,2,3,4,5,6,7,8,9,10}}] [--interpretability {{1,2,3,4,5,6,7,8,9,10}}] [--train-size TRAIN_SIZE] [--seed SEED] [--fast] [--force]
* usage: python {cwd}/openai_server/agent_tools/driverless_ai_data_science.py [--experiment_key EXPERIMENT_KEY] [--dataset_key DATASET_KEY] [--data-url DATA_URL] [--dataset-name DATASET_NAME] [--data-source DATA_SOURCE] [--target-column TARGET_COLUMN] [--task {{classification,regression,predict,shapley_original_features,shapley_transformed_features,transform,fit_and_transform,artifacts}}] [--scorer SCORER] [--experiment-name EXPERIMENT_NAME] [--accuracy {{1,2,3,4,5,6,7,8,9,10}}] [--time {{1,2,3,4,5,6,7,8,9,10}}] [--interpretability {{1,2,3,4,5,6,7,8,9,10}}] [--train-size TRAIN_SIZE] [--seed SEED] [--fast] [--force]
* Typical case for creating experiment might be:
python {cwd}/openai_server/agent_tools/driverless_ai_data_science.py --dataset-name "my_dataset" --data-url "https://mydata.com/mydata.csv" --target-column "target" --task "classification" --scorer "auc" --experiment-name "my_experiment"
* A typical re-use of the experiment_key and dataset_key for prediction (or shapley, transform, fit_and_transform) would be like:
Expand Down
2 changes: 1 addition & 1 deletion src/version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = "d513adb2593c08f27ea73477833364633b824737"
__version__ = "5c767ef2ac21b6f04ed9f8ab5c49336c96713d04"

0 comments on commit 45226a1

Please sign in to comment.