Skip to content

Commit

Permalink
ENHANCE: FactorCosetAction and RightTransversal
Browse files Browse the repository at this point in the history
Speed up these operations by finding a better subgroup series, defined by
actions, and use these actions if possible.

Added example and clarify that ordering of points in `FactorCosetAction`
is not guaranteed.

This resolves gap-system#5040, gap-system#5337
  • Loading branch information
hulpke committed May 6, 2024
1 parent 2d44774 commit eb9ef68
Show file tree
Hide file tree
Showing 5 changed files with 163 additions and 6 deletions.
3 changes: 3 additions & 0 deletions lib/csetgrp.gd
Original file line number Diff line number Diff line change
Expand Up @@ -441,3 +441,6 @@ DeclareGlobalFunction("IntermediateGroup");
# forward declaration for recursive call.
DeclareGlobalFunction("DoConjugateInto");

# action-based ascending seried for perm group
DeclareGlobalFunction("ActionRefinedSeries");

4 changes: 4 additions & 0 deletions lib/csetgrp.gi
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,10 @@ local o,b,img,G1,c,m,hardlimit,gens,t,k,intersize;
fi;
fi;

if ValueOption("cheap")=true then
return fail; # do not do hard work
fi;

if Index(G,U)>hardlimit then
Info(InfoWarning,1,
"will have to use permutation action of degree bigger than ", hardlimit);
Expand Down
148 changes: 144 additions & 4 deletions lib/csetperm.gi
Original file line number Diff line number Diff line change
Expand Up @@ -42,10 +42,56 @@ end );
##
#F RightTransversalPermGroupConstructor( <filter>, <G>, <U> ) . constructor
##
MAX_SIZE_TRANSVERSAL := 1000000;
MAX_SIZE_TRANSVERSAL := 100000;

# so far only orbits and perm groups -- TODO: Other deduced actions
InstallGlobalFunction(ActionRefinedSeries,function(G,U)
local o,A,ser,act,i;
o:=List(Orbits(U,MovedPoints(G)),Set);
SortBy(o,Length);
A:=G;
ser:=[A];
act:=[0]; # dummy entry
i:=1;
while i<=Length(o) and Size(A)>Size(U) do
A:=Stabilizer(A,o[i],OnSets);
if Size(A)<Size(ser[Length(ser)]) then
Add(ser,A);
Add(act,[o[i],OnSets]);
fi;
i:=i+1;
od;
if Size(A)>Size(U) then
Add(ser,U);
Add(act,fail);
fi;
# refine large step?
for i in [1..Length(ser)-1] do
if IndexNC(ser[i],ser[i+1])>MAX_SIZE_TRANSVERSAL then
A:=IntermediateGroup(ser[i],ser[i+1]:cheap);
if A<>fail then
# refine with action
o:=ActionRefinedSeries(ser[i],A);
ser:=Concatenation(ser{[1..i]},o[1]{[1..Length(o[1])-1]},
ser{[i+1..Length(ser)]});
act:=Concatenation(act{[1..i]},o[2]{[1..Length(o[2])-1]},
act{[i+1..Length(act)]});
else
# no refinement, next step
i:=i+1;
fi;
else
# no refinement needed, next step
i:=i+1;
fi;
od;
# make ascending like AscendingSeries
return [Reversed(ser),Reversed(act)];
end);

BindGlobal( "RightTransversalPermGroupConstructor", function( filter, G, U )
local GC, UC, noyet, orbs, domain, GCC, UCC, ac, nc, bpt, enum, i;
local GC, UC, noyet, orbs, domain, GCC, UCC, ac, nc, bpt, enum, i,
actions,nct;

GC := CopyStabChain( StabChainImmutable( G ) );
UC := CopyStabChain( StabChainImmutable( U ) );
Expand All @@ -66,16 +112,23 @@ BindGlobal( "RightTransversalPermGroupConstructor", function( filter, G, U )
(Length(UCC.genlabels)=0 and
SizeStabChain(GCC)>MAX_SIZE_TRANSVERSAL)
) then
# we potentially go through many steps, making it expensive
ac:=AscendingChain(G,U:cheap);

# first get a factorization through actions
ac:=ActionRefinedSeries(G,U);
actions:=ac[2];
ac:=ac[1];

# go in biggish steps through the chain
nc:=[ac[1]];
nct:=[actions[1]];
for i in [3..Length(ac)] do
if Size(ac[i])/Size(nc[Length(nc)])>MAX_SIZE_TRANSVERSAL then
Add(nc,ac[i-1]);
Add(nct,actions[i-1]);
fi;
od;
Add(nc,ac[Length(ac)]);
Add(nct,actions[Length(actions)]);
if Length(nc)>2 then
ac:=[];
for i in [Length(nc),Length(nc)-1..2] do
Expand Down Expand Up @@ -805,3 +858,90 @@ function(cos1,cos2)
od;
return [];
end);


#############################################################################
##
#F FactorCosetAction( <G>, <U>, [<N>] ) operation on the right cosets Ug
## with possibility to indicate kernel
##
BindGlobal("DoFactorCosetActionPerm",function(arg)
local G,u,op,h,N,rt,ac,actions,hom,i,q;
G:=arg[1];
u:=arg[2];
if Length(arg)>2 then
N:=arg[3];
else
N:=false;
fi;
if IsList(u) and Length(u)=0 then
u:=G;
Error("only trivial operation ? I Set u:=G;");
fi;
if N=false then
N:=Core(G,u);
fi;

ac:=ActionRefinedSeries(G,u);
actions:=ac[2];
ac:=ac[1];
hom:=false;
for i in [2..Length(ac)] do
if actions[i-1]<>fail
# allow 2GB memory use for writing down orbit
and SIZE_OBJ(actions[i-1][1])*IndexNC(ac[i],ac[i-1])<2*10^9 then

op:=rec();
h:=Orbit(ac[i],actions[i-1][1],actions[i-1][2]:permutations:=op);
if IsBound(op.permutations) then
rt:=List(op.permutations,PermList);
q:=Group(rt);
SetSize(q,IndexNC(G,N));
h:=GroupHomomorphismByImagesNC(ac[i],Group(rt),
op.generators,rt);
else
h:=ActionHomomorphism(ac[i],h,actions[i-1][2],"surjective");
fi;
else
rt:=RightTransversal(ac[i],ac[i-1]);
if not IsRightTransversalRep(rt) then
# the right transversal has no special `PositionCanonical' method.
rt:=List(rt,i->RightCoset(ac[i-1],i));
fi;
h:=ActionHomomorphism(ac[i],rt,OnRight,"surjective");

fi;
Unbind(op);
Unbind(rt);
if i=2 then
hom:=h;
else
hom:=KuKGenerators(ac[i],h,hom);;
q:=Group(hom);
StabChainOptions(q).limit:=Size(ac[i]);
hom:=GroupHomomorphismByImagesNC(ac[i],q,GeneratorsOfGroup(ac[i]),hom);;
fi;
od;

op:=Image(hom,G);
SetSize(op,IndexNC(G,N));

# and note our knowledge
SetKernelOfMultiplicativeGeneralMapping(hom,N);
AddNaturalHomomorphismsPool(G,N,hom);
return hom;
end);

InstallMethod(FactorCosetAction,"by right transversal operation",
IsIdenticalObj,[IsPermGroup,IsPermGroup],0,
function(G,U)
return DoFactorCosetActionPerm(G,U);
end);

InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel",IsFamFamFam,
[IsPermGroup,IsPermGroup,IsPermGroup],0,
function(G,U,N)
return DoFactorCosetActionPerm(G,U,N);
end);

3 changes: 3 additions & 0 deletions lib/factgrp.gd
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,9 @@ DeclareAttribute("NaturalHomomorphismsPool",IsGroup,
## gap> Size(Image(last));
## 120
## ]]></Example>
## The correspondence of points with cosets will, for performance reasons,
## depend on the method used. It is not guaranteed that it will be the same
## as used by <C>RightTransversal</C> or <C>RightCosets</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
Expand Down
11 changes: 9 additions & 2 deletions tst/teststandard/permgrp.tst
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ gap> START_TEST("permgrp.tst");
gap> Size(Normalizer(SymmetricGroup(100),PrimitiveGroup(100,1)));
1209600
gap> g:=Image(RegularActionHomomorphism(AbelianGroup([4,5,5])));;
gap> Size(Normalizer(SymmetricGroup(100),g));
gap> Size(Normalizer(SymmetricGroup(100),g));
96000

# the following tests used to choke GAP, because GAP failed to find
Expand Down Expand Up @@ -136,7 +136,7 @@ false
gap> IsConjugatorAutomorphism(hom);
true

# classes over larger field extension
# classes over larger field extension
gap> Length(ConjugacyClasses(PSL(2,64)));
65

Expand All @@ -149,5 +149,12 @@ gap> AllTransitiveGroups(NrMovedPoints,12,
gap> MinimalFaithfulPermutationDegree(SmallGroup(5^6,33));
55

# FactorCosetAction
gap> g:=MathieuGroup(23);;
gap> u:=Normalizer(g,SylowSubgroup(g,3));;
gap> act:=FactorCosetAction(g,u);;
gap> NrMovedPoints(Range(act));
70840

#
gap> STOP_TEST( "permgrp.tst", 1);

0 comments on commit eb9ef68

Please sign in to comment.